Bài 34 trang 77 Vở bài tập toán 8 tập 1
Giải bài 34 trang 77 VBT toán 8 tập 1. Thực hiện các phép tính sau: a)(5x-10)/(x^2 +7):(2x - 4) ...
Thực hiện các phép tính sau:
LG a
\( \dfrac{5x-10}{x^{2}+7} : (2x - 4)\)
Phương pháp giải:
Áp dụng quy tắc chia hai phân thức:
\( \dfrac{A}{B} : \dfrac{C}{D} = \dfrac{A}{B}. \dfrac{D}{C}\) với \( \dfrac{C}{D} ≠ 0\).
Giải chi tiết:
Coi đa thức \(2x-4\) như phân thức \(\dfrac{{2x - 4}}{1}\), ta có:
\( \dfrac{5x-10}{x^{2}+7}: (2x - 4)\)\(\, =\dfrac{5x-10}{x^{2}+7}:\dfrac{2x-4}{1}\)\(\,=\dfrac{5x-10}{x^{2}+7}.\dfrac{1}{2x-4}\)
\( =\dfrac{5(x-2).1}{(x^{2}+7).2(x-2)}=\dfrac{5}{2(x^{2}+7)}\)
LG b
\(({x^2} - 25): \dfrac{2x+10}{3x-7}\)
Phương pháp giải:
Áp dụng quy tắc chia hai phân thức:
\( \dfrac{A}{B} : \dfrac{C}{D} = \dfrac{A}{B}. \dfrac{D}{C}\) với \( \dfrac{C}{D} ≠ 0\).
Giải chi tiết:
Coi đa thức \({x^2} - 25\) như phân thức \(\dfrac{{{x^2} - 25}}{1}\) ta có:
\(({x^2} - 25): \dfrac{2x+10}{3x-7} \)
\(=\dfrac{x^{2}-25}{1}:\dfrac{2x+10}{3x-7}\)
\(=\dfrac{x^{2}-25}{1}.\dfrac{3x-7}{2x+10}\)
\( =\dfrac{(x-5)(x+5)(3x-7)}{2(x+5)}\)
\(=\dfrac{(x-5)(3x-7)}{2}\)
LG c
\( \dfrac{x^{2}+x}{5x^{2}-10x+5}:\dfrac{3x+3}{5x-5}\).
Phương pháp giải:
Áp dụng quy tắc chia hai phân thức:
\( \dfrac{A}{B} : \dfrac{C}{D} = \dfrac{A}{B}. \dfrac{D}{C}\) với \( \dfrac{C}{D} ≠ 0\).
Giải chi tiết:
\( \dfrac{x^{2}+x}{5x^{2}-10x+5}:\dfrac{3x+3}{5x-5}\)
\(= \dfrac{x^{2}+x}{5x^{2}-10x+5}.\dfrac{5x-5}{3x+3}\)
\( = \dfrac{{x\left( {x + 1} \right)}}{{5\left( {{x^2} - 2x + 1} \right)}}.\dfrac{{5\left( {x - 1} \right)}}{{3\left( {x + 1} \right)}}\)
\(=\dfrac{x(x+1).5(x-1)}{5(x-1)^{2}.3(x+1)}=\dfrac{x}{3(x-1)}\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 34 trang 77 Vở bài tập toán 8 tập 1 timdapan.com"