Bài 3.12 trang 10 SBT Vật Lí 12

Giải 3.12 trang 10 sách bài tập vật lí 12. Một con lắc đơn gồm một quả cầu nhỏ khối lượng 50 g được treo vào đầu một sợi dây dài 2 m. Lấy g = 9,8 m/s2.


Đề bài

Một con lắc đơn gồm một quả cầu nhỏ có khối lượng \(50g\) được treo vào đầu một sợi dây dài \(2m\). Lấy \(g = 9,8m/{s^2}\).

a) Tính chu kì dao động của con lắc khi biên độ góc nhỏ.

b) Kéo con lắc ra khỏi vị trí cân bằng đến vị trí có li độ góc \(\alpha  = {30^0}\) rồi buông ra không vận tốc đầu. Tính tốc độ của quả cầu và lực căng \(\overrightarrow F \) của dây khi con lắc đi qua vị trí cân bằng.

Phương pháp giải - Xem chi tiết

a) Sử dụng công thức tính chu kì con lắc: \(T = 2\pi \sqrt {\dfrac{l}{g}} \)

b) Sử dụng công thức tính vận tốc và biểu thức định luật II Niuton tính lực căng dây \(F\)

Lời giải chi tiết

Kéo con lắc ra khỏi vị trí cân bằng đến vị trí có li độ góc \(\alpha  = {30^0}\) rồi buông ra không vận tốc đầu

\( \Rightarrow \) Biên độ góc \({\alpha _0} = {30^0}\)

a) Chu kì con lắc đơn: \(T = 2\pi \sqrt {\dfrac{l}{g}}  = 2\pi \sqrt {\dfrac{2}{{9,8}}}  = 2,8s\)

b) Ta có công thức tính động năng

\(\begin{array}{l}\left\{ \begin{array}{l}{{\rm{W}}_d} = \dfrac{1}{2}m{v^2}\\{{\rm{W}}_d} = mgl(\cos \alpha  - \cos {\alpha _0})\end{array} \right.\\ \Rightarrow v = \sqrt {2gl(\cos \alpha  - \cos {\alpha _0})} \\ = \sqrt {2.9,8.2(\cos {0^0} - \cos {{30}^0})} \\ = 2,3(m/s)\end{array}\)

Áp dụng định luật II Niuton:

\(\overrightarrow F  + \overrightarrow P  = m\overrightarrow a \)

Chiếu theo phương hướng tâm:

\(\begin{array}{l}F - P = m{a_{ht}} = m\dfrac{{{v^2}}}{l}\\ \Leftrightarrow F = P + m\dfrac{{{v^2}}}{l}\\ = P + 2mg(1 - \cos {\alpha _0})\\ = mg + 2mg(1 - \cos {\alpha _0})\\ = mg(3 - 2\cos {\alpha _0})\\ = 0,05.9,8.(3 - 2\cos {30^0}) = 0,64(N)\end{array}\)