Bài 3 trang 24 SBT toán 8 tập 1
Giải bài 3 trang 24 sách bài tập toán 8. Bạn Lan viết các đẳng thức sau và đố các bạn trong nhóm học tập tìm ra chỗ sai. Em hãy sửa chỗ sai cho đúng.
Đề bài
Bạn Lan viết các đẳng thức sau và đố các bạn trong nhóm học tập tìm ra chỗ sai. Em hãy sửa chỗ sai cho đúng.
a. \(\displaystyle {{5x + 3} \over {x - 2}} = {{5{x^2} + 13x + 6} \over {{x^2} - 4}}\)
b. \(\displaystyle {{x + 1} \over {x + 3}} = {{{x^2} + 3} \over {{x^2} + 6x + 9}}\)
c. \(\displaystyle {{{x^2} - 2} \over {{x^2} - 1}} = {{x + 2} \over {x + 1}}\)
d. \(\displaystyle {{2{x^2} - 5x + 3} \over {{x^2} + 3x - 4}} = {{2{x^2} - x - 3} \over {{x^2} + 5x + 4}}\)
Phương pháp giải - Xem chi tiết
Hai phân thức \( \dfrac{A}{B}\) và \( \dfrac{C}{D}\) gọi là bằng nhau nếu \(AD = BC\).
Lời giải chi tiết
a. Xét: \(\left( {5x + 3} \right)\left( {{x^2} - 4} \right) \)\(\,= 5{x^3} - 20x + 3{x^2} - 12\) (1)
Xét: \(\left( {x - 2} \right)\left( {5{x^2} + 13x + 6} \right)\)\(\, = 5{x^3} + 13{x^2} + 6x - 10{x^2} - 26x-12 \)\(\,= 5{x^3} - 20x + 3{x^2} - 12\) (2)
Từ (1) và (2) suy ra đẳng thức đúng.
b. Xét: \(\left( {x + 1} \right)\left( {{x^2} + 6x + 9} \right)\)\(\, = {x^3} + 6{x^2} + 9x + {x^2} + 6x + 9 \)\(\,= {x^3} + 7{x^2} + 15x + 9\)
Xét: \(\left( {x + 3} \right)\left( {{x^2} + 3} \right) \)\(\,= {x^3} + 3x + 3{x^2} + 9\)
Suy ra: \( \left( {x + 1} \right)\left( {{x^2} + 6x + 9} \right) \ne \)\(\,\left( {x + 3} \right)\left( {{x^2} + 3} \right)\)
Đẳng thức sai
\(\displaystyle {{x + 1} \over {x + 3}} \ne {{{x^2} + 3} \over {{x^2} + 6x + 9}}\).
Sửa lại \(\displaystyle {{x + 1} \over {x + 3}} = {{{x^2} + 4x + 3} \over {{x^2} + 6x + 9}}\)
c. Xét: \(\left( {{x^2} - 2} \right)\left( {x + 1} \right) \)\(\,= {x^3} + {x^2} - 2x - 2\)
Xét: \(\left( {{x^2} - 1} \right)\left( {x + 2} \right) \)\(\,= {x^3} + 2{x^2} - x - 2\)
Suy ra \(\left( {{x^2} - 2} \right)\left( {x + 1} \right) \ne \left( {{x^2} - 1} \right)\left( {x + 2} \right)\)
Đẳng thức sai
\(\displaystyle {{{x^2} - 2} \over {{x^2} - 1}} \ne {{x + 2} \over {x + 1}}\).
Sửa lại \(\displaystyle {{{x^2} + x - 2} \over {{x^2} - 1}} = {{x + 2} \over {x + 1}}\)
d. Xét: \(\left( {2{x^2} - 5x + 3} \right)\left( {{x^2} + 5x + 4} \right)\)
\( = 2{x^4} + 10{x^3} + 8{x^2} - 5{x^3} \)\(\,- 25{x^2} - 20x + 3{x^2} + 15x + 12\)
\( = 2{x^4} + 5{x^3} - 14{x^2} - 5x + 12 \)
Xét: \(\left( {{x^2} + 3x - 4} \right)\left( {2{x^2} - x - 3} \right) \)
\(= 2{x^4} - {x^3} - 3{x^2} + 6{x^3} - 3{x^2} - 9x \)\(\,- 8{x^2} + 4x + 12 \)
\( = 2{x^4} + 5{x^3} - 14{x^2} - 5x + 12 \)
Suy ra \( \left( {2{x^2} - 5x + 3} \right)\left( {{x^2} + 5x + 4} \right)\)\(\, = \left( {{x^2} + 3x - 4} \right)\left( {2{x^2} - x - 3} \right) \)
Nên đẳng thức đã cho đúng.
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 3 trang 24 SBT toán 8 tập 1 timdapan.com"