Bài 28 trang 72 Vở bài tập toán 8 tập 1

Giải bài 28 trang 72 VBT toán 8 tập 1. Thực hiện các phép tính: a) (x + 1)/(x - 3) - (1 - x)/(x + 3) - [2x(1 - x)/(9 -x^2)...


Thực hiện các phép tính:

LG a

\(\dfrac{{x + 1}}{{x - 3}} - \dfrac{{1 - x}}{{x + 3}} - \dfrac{{2x\left( {1 - x} \right)}}{{9 - {x^2}}}\) 

Phương pháp giải:

Áp dụng:

- Quy tắc trừ hai phân thức: \( \dfrac{A}{B}-\dfrac{C}{D}=\dfrac{A}{B}+\left( { - \dfrac{C}{D}} \right)\) 

- Quy tắc đổi dấu: \(  -\dfrac{A}{B} = \dfrac{{ A}}{-B} =\dfrac{{- A}}{B}\).

Giải chi tiết:

MTC \(=(x-3)(x+3)\)

Áp dụng đẳng thức \(  -\dfrac{A}{B} = \dfrac{{ A}}{-B} \) ta có:

\(\eqalign{ 
& {{x + 1} \over {x - 3}} - {{1 - x} \over {x + 3}} - {{2x\left( {1 - x} \right)} \over {9 - {x^2}}} \cr 
& = {{x + 1} \over {x - 3}} + {{ - \left( {1 - x} \right)} \over {x + 3}} + {{2x\left( {1 - x} \right)} \over { - \left( {9 - {x^2}} \right)}} \cr 
& = {{x + 1} \over {x - 3}} + {{x - 1} \over {x + 3}} + {{2x\left( {1 - x} \right)} \over {{x^2} - 9}} \cr 
& = {{x + 1} \over {x - 3}} + {{x - 1} \over {x + 3}} + {{2x - 2{x^2}} \over {\left( {x - 3} \right)\left( {x + 3} \right)}} \cr 
& = {{\left( {x + 1} \right)\left( {x + 3} \right) + \left( {x - 1} \right)\left( {x - 3} \right) + 2x - 2{x^2}} \over {\left( {x - 3} \right)\left( {x + 3} \right)}} \cr 
& = {{{x^2} + 3x + x + 3 + {x^2} - 3x - x + 3 + 2x - 2{x^2}} \over {\left( {x - 3} \right)\left( {x + 3} \right)}} \cr 
& = {{2x + 6} \over {\left( {x - 3} \right)\left( {x + 3} \right)}}\cr& = {{2\left( {x + 3} \right)} \over {\left( {x - 3} \right)\left( {x + 3} \right)}} = {2 \over {x - 3}} \cr} \)


LG b

 \(\dfrac{{3x + 1}}{{{{\left( {x - 1} \right)}^2}}} - \dfrac{1}{{x + 1}} + \dfrac{{x + 3}}{{1 - {x^2}}}\)  

Phương pháp giải:

Áp dụng: 

- Quy tắc trừ hai phân thức: \( \dfrac{A}{B}-\dfrac{C}{D}=\dfrac{A}{B}+\left( { - \dfrac{C}{D}} \right)\) 

- Quy tắc đổi dấu: \(  -\dfrac{A}{B} = \dfrac{{ A}}{-B} =\dfrac{{- A}}{B}\).

Giải chi tiết:

 \(1 - {x^2} = \left( {1 - x} \right)\left( {1 + x} \right) \)\(=  - \left( {x - 1} \right)\left( {x + 1} \right)\)

MTC \(={\left( {x - 1} \right)^2}\left( {x + 1} \right)\)

\(\eqalign{
& {{3x + 1} \over {{{\left( {x - 1} \right)}^2}}} - {1 \over {x + 1}} + {{x + 3} \over {1 - {x^2}}} \cr 
& = {{3x + 1} \over {{{\left( {x - 1} \right)}^2}}} + {{ - 1} \over {x + 1}} + {{ - \left( {x + 3} \right)} \over { - \left( {1 - {x^2}} \right)}} \cr 
& = {{3x + 1} \over {{{\left( {x - 1} \right)}^2}}} + {{ - 1} \over {x + 1}} + {{ - \left( {x + 3} \right)} \over {{x^2} - 1}} \cr 
& = {{3x + 1} \over {{{\left( {x - 1} \right)}^2}}} + {{ - 1} \over {x + 1}} + {{ - \left( {x + 3} \right)} \over {\left( {x - 1} \right)\left( {x + 1} \right)}} \cr 
& = {{\left( {3x + 1} \right)\left( {x + 1} \right) - {{\left( {x - 1} \right)}^2} - \left( {x + 3} \right)\left( {x - 1} \right)} \over {{{\left( {x - 1} \right)}^2}\left( {x + 1} \right)}} \cr 
& = {{3{x^2} + 3x+x + 1 - {x^2} + 2x - 1 - {x^2} +x-3x + 3} \over {{{\left( {x - 1} \right)}^2}\left( {x + 1} \right)}} \cr 
& = {{{x^2} + 4x + 3} \over {{{\left( {x - 1} \right)}^2}\left( {x + 1} \right)}} \cr 
&= {{{x^2} + x + 3x + 3} \over {{{\left( {x - 1} \right)}^2}\left( {x + 1} \right)}} \cr 
&= {{x\left( {x + 1} \right) + 3\left( {x + 1} \right)} \over {{{\left( {x - 1} \right)}^2}\left( {x + 1} \right)}} \cr 
&= {{\left( {x + 1} \right)\left( {x + 3} \right)} \over {{{\left( {x - 1} \right)}^2}\left( {x + 1} \right)}} \cr 
&= {{x + 3} \over {{{\left( {x - 1} \right)}^2}}} \cr} \) 

 



Từ khóa phổ biến