Bài 2.5 trang 100 SBT giải tích 12
Bài 2.5 trang 100 sách bài tập giải tích 12. Tìm khẳng định đúng trong các khẳng định sau....
Đề bài
Tìm khẳng định đúng trong các khẳng định sau:
A. \(\sqrt {17} < \root 3 \of {28} \)
B. \(\root 4 \of {13} >\root 5 \of {23} \)
C. \({({1 \over 3})^{\sqrt 3 }} >{({1 \over 3})^{\sqrt 2 }}\)
D. \({4^{\sqrt 5 }} > {4^{\sqrt 7 }}\)
Phương pháp giải - Xem chi tiết
Sử dụng các tính chất so sánh lũy thừa:
+ Nếu \(a > 1\) thì \({a^\alpha } > {a^\beta } \Leftrightarrow \alpha > \beta \).
+ Nếu \(0 < a < 1\) thì \({a^\alpha } > {a^\beta } \Leftrightarrow \alpha < \beta \).
Lời giải chi tiết
Đáp án A.
\(\begin{array}{l}
\sqrt {17} > \sqrt {16} = 4\\
\sqrt[3]{{28}} < \sqrt[3]{{64}} = 4\\
\Rightarrow \sqrt {17} > 4 > \sqrt[3]{{28}}
\end{array}\)
nên A sai.
Đáp án B. \(\root 4 \of {13} = \root {20} \of {{{13}^5}} = \root {20} \of {371293} ;\) \(\root 5 \of {23} = \root {20} \of {{{23}^4}} = \root {20} \of {279841} \)
Ta có \(371293 > 279841\) nên \(\root 4 \of {13} > \root 5 \of {23} \).
Vậy B đúng.
Đáp án C.\(\sqrt 3 > \sqrt 2 \) và \({1 \over 3} < 1\) nên \({({1 \over 3})^{\sqrt 3 }} < {({1 \over 3})^{\sqrt 2 }}\).
Vậy C sai.
Đáp án D. \(\sqrt 5 < \sqrt 7 \) và \(4 > 1\) nên \({4^{\sqrt 5 }}< {4^{\sqrt 7 }}\).
Vậy D sai.
Chọn B.
Chú ý:
Có thể nhận xét đáp án A như sau:
\(\sqrt {17} = \root 6 \of {{{17}^3}} = \root 6 \of {4913} ;\) \(\root 3 \of {28} = \root 6 \of {{{28}^2}} = \root 6 \of {784} \)
\( \Rightarrow \sqrt {17} \) > \(\root 3 \of {28} \). Vậy A sai.
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 2.5 trang 100 SBT giải tích 12 timdapan.com"