Bài 2.5 trang 100 SBT giải tích 12

Bài 2.5 trang 100 sách bài tập giải tích 12. Tìm khẳng định đúng trong các khẳng định sau....


Đề bài

Tìm khẳng định đúng trong các khẳng định sau:

A. \(\sqrt {17} < \root 3 \of {28} \)

B. \(\root 4 \of {13} >\root 5 \of {23} \)

C. \({({1 \over 3})^{\sqrt 3 }} >{({1 \over 3})^{\sqrt 2 }}\)

D. \({4^{\sqrt 5 }} > {4^{\sqrt 7 }}\)

Phương pháp giải - Xem chi tiết

Sử dụng các tính chất của lũy thừa.

Lời giải chi tiết

A. \(\sqrt {17}  = \root 6 \of {{{17}^3}}  = \root 6 \of {4913} ;\) \(\root 3 \of {28}  = \root 6 \of {{{28}^2}}  = \root 6 \of {784} \)

\( \Rightarrow \sqrt {17} \) >  \(\root 3 \of {28} \). Vậy A sai.

B. \(\root 4 \of {13}  = \root {20} \of {{{13}^5}}  = \root {20} \of {371293} ;\) \(\root 5 \of {23}  = \root {20} \of {{{23}^4}}  = \root {20} \of {279841} \)

Ta có \(371293 > 279841\) nên \(\root 4 \of {13}  > \root 5 \of {23} \). Vậy B đúng.

C.\(\sqrt 3  > \sqrt 2 \) và \({1 \over 3} < 1\) nên \({({1 \over 3})^{\sqrt 3 }} <  {({1 \over 3})^{\sqrt 2 }}\). Vậy C sai.

D. \(\sqrt 5  < \sqrt 7 \) và \(4 > 1\) nên \({4^{\sqrt 5 }}< {4^{\sqrt 7 }}\). Vậy D sai.

Chọn B.

Bài giải tiếp theo