Giải bài 2.23 trang 50 Chuyên đề học tập Toán 11 Kết nối tri thức
Tìm số đỉnh nhỏ nhất cần thiết để có thể xây dựng một đồ thị đầy đủ với ít nhất 1 000 cạnh.
Đề bài
Tìm số đỉnh nhỏ nhất cần thiết để có thể xây dựng một đồ thị đầy đủ với ít nhất 1 000 cạnh.
Phương pháp giải - Xem chi tiết
Dựa vào kiến thức đồ thị để làm
Lời giải chi tiết
Giả sử G là một đồ thị đầy đủ có n đỉnh và có ít nhất 1 000 cạnh (n ∈ ℕ, n ≥ 2).
Vì G là đồ thị đầy đủ nên mỗi cặp đỉnh của G đều được nối với nhau bằng một cạnh, do đó mỗi đỉnh của G đều có bậc là (n – 1).
Tổng tất cả các bậc của các đỉnh của G là n(n – 1).
Suy ra G có số cạnh là \(\frac{{n\left( {n - 1} \right)}}{2}\)
Vì G có ít nhất 1 000 cạnh nên ta có \(\frac{{n\left( {n - 1} \right)}}{2} \ge 1000\)
\(\begin{array}{*{20}{l}}{ \Leftrightarrow \;n\left( {n-1} \right)-2000 \ge 0}\\{ \Leftrightarrow \;{n^2}\;-n-2000{\rm{ }} \ge {\rm{ }}0{\rm{ }}\left( * \right)}\end{array}\)
Giải bất phương trình (*), ta được \(n \le \frac{{1 - 3\sqrt {889} }}{2} \approx - 44,22\) (không thỏa mãn) hoặc \(n \ge \frac{{1 + 3\sqrt {889} }}{2} \approx 45,22\) (thỏa mãn).
Do n là số tự nhiên nên n nhỏ nhất thỏa mãn là 46.
Vậy số đỉnh nhỏ nhất cần thiết để có thể xây dựng một đồ thị đầy đủ với ít nhất 1 000 cạnh là 46 đỉnh.
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài 2.23 trang 50 Chuyên đề học tập Toán 11 Kết nối tri thức timdapan.com"