Giải bài 2.18 trang 26 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Miền nghiệm của hệ bất phương trình


Đề bài

Miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{x \ge  - 1}\\{x + y \le 0}\\{y \ge 0}\end{array}} \right.\) là:

A. Một nửa mặt phẳng.

B. Miền tam giác.

C. Miền tứ giác.

D. Miền ngũ giác.

Phương pháp giải - Xem chi tiết

- Vẽ các bất phương trình trên cùng một mặt phẳng tọa độ \(Oxy.\)

- Xác định miền nghiệm của hệ bất phương trình đã cho.

Lời giải chi tiết

Miền nghiệm của bất phương trình \(x \ge  - 1\) là nửa mặt phẳng bờ \(d:x =  - 1\) chứa gốc tọa độ \(O\left( {0;0} \right).\)

Miền nghiệm của bất phương trình \(x + y \le 0\) là nửa mặt phẳng bờ \({d_1}:x + y = 0\) chứa điểm \(\left( { - 1;0} \right).\)

Miền nghiệm của bất phương trình \(y \ge 0\) là nửa mặt phẳng bờ \({d_2}:y = 0\) chứa điểm \(\left( {0;1} \right).\)

Miền nghiệm của hệ bất phương trình trên là tam giác \(OAB.\)

 Chọn B



Bài giải liên quan

Từ khóa phổ biến