Giải bài 2.15 trang 46 SGK Toán 8 - Cùng khám phá
Thực hiện các phép tính sau:
Đề bài
Thực hiện các phép tính sau:
a) \(\frac{1}{{2x - 3}} - \frac{2}{{3 - 2x}} + \frac{{18}}{{9 - 4{x^2}}}\)
b) \(\frac{2}{{{a^2} - 1}} - \frac{1}{{a + 1}} - \frac{1}{{a - 1}}\)
c) \(\frac{{a + b}}{{a - b}} + \frac{{{a^2} - 4{b^2}}}{{{a^2} - {b^2}}} - \frac{{a - 3b}}{{a + b}}\)
d) \(\frac{x}{{{x^2} + xy}} - \frac{y}{{{x^2} - {y^2}}} + \frac{{x + y}}{{xy - {y^2}}}\)
Phương pháp giải - Xem chi tiết
Ta quy đồng mẫu thức rồi áp dụng quy tắc cộng, trừ các phân thức có cùng mẫu thức vừa tìm được.
Lời giải chi tiết
a)
\(\begin{array}{l}\frac{1}{{2x - 3}} - \frac{2}{{3 - 2x}} + \frac{{18}}{{9 - 4{x^2}}} = \frac{{ - \left( {3 + 2x} \right) - 2\left( {3 + 2x} \right) + 18}}{{9 - 4{x^2}}} = \frac{{ - 3 - 2x - 6 - 4x + 18}}{{9 - 4{x^2}}}\\ = \frac{{9 - 6x}}{{9 - 4{x^2}}} = \frac{{3\left( {3 - 2x} \right)}}{{\left( {3 - 2x} \right)\left( {3 + 2x} \right)}} = \frac{3}{{3 + 2x}}\end{array}\)
b)
\(\frac{2}{{{a^2} - 1}} - \frac{1}{{a + 1}} - \frac{1}{{a - 1}} = \frac{{2 - \left( {a - 1} \right) - \left( {a + 1} \right)}}{{\left( {a - 1} \right)\left( {a + 1} \right)}} = \frac{{2 - a + 1 - a - 1}}{{\left( {a - 1} \right)\left( {a + 1} \right)}} = \frac{{2\left( {1 - a} \right)}}{{\left( {a - 1} \right)\left( {a + 1} \right)}} = \frac{{ - 2}}{{a + 1}}\)
c)
\(\begin{array}{l}\frac{{a + b}}{{a - b}} + \frac{{{a^2} - 4{b^2}}}{{{a^2} - {b^2}}} - \frac{{a - 3b}}{{a + b}} = \frac{{{a^2} + 2ab + {b^2}}}{{{a^2} - {b^2}}} + \frac{{{a^2} - 4{b^2}}}{{{a^2} - {b^2}}} - \frac{{{a^2} - 4ab + 3{b^2}}}{{{a^2} - {b^2}}}\\ = \frac{{{a^2} + 6ab - 6{b^2}}}{{{a^2} - {b^2}}}\end{array}\)
d)
\(\begin{array}{l}\frac{x}{{{x^2} + xy}} - \frac{y}{{{x^2} - {y^2}}} + \frac{{x + y}}{{xy - {y^2}}} = \frac{x}{{x\left( {x + y} \right)}} - \frac{y}{{\left( {x + y} \right)\left( {x - y} \right)}} + \frac{{x + y}}{{y\left( {x - y} \right)}}\\ = \frac{{xy\left( {x - y} \right)}}{{xy\left( {{x^2} - {y^2}} \right)}} - \frac{{x{y^2}}}{{xy\left( {{x^2} - {y^2}} \right)}} + \frac{{x{{\left( {x + y} \right)}^2}}}{{xy\left( {{x^2} - {y^2}} \right)}}\\ = \frac{{{x^2}y - x{y^2} - x{y^2} + {x^3} + 2{x^2}y + x{y^2}}}{{xy\left( {{x^2} - {y^2}} \right)}}\\ = \frac{{{x^3} + {x^2}y - x{y^2}}}{{xy\left( {{x^2} - {y^2}} \right)}} = \frac{{{x^2} + xy - {y^2}}}{{y\left( {{x^2} - {y^2}} \right)}}\end{array}\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài 2.15 trang 46 SGK Toán 8 - Cùng khám phá timdapan.com"