Giải bài 2 trang 85 SGK Toán 10 tập 2 – Chân trời sáng tạo

Gieo hai con xúc xắc cân đối và đồng chất. Tính xác suất của mỗi biến cố sau: a) “Tổng số chấm xuất hiện nhỏ hơn 10” b) “Tích số chấm xuất hiện chia hết cho 3”


Đề bài

Gieo hai con xúc xắc cân đối và đồng chất. Tính xác suất của mỗi biến cố sau:

a) “Tổng số chấm xuất hiện nhỏ hơn 10”

b) “Tích số chấm xuất hiện chia hết cho 3”

Phương pháp giải - Xem chi tiết

Bước 1: Xác định không gian mẫu

Bước 2: Xác định biến cố đối

Bước 3: Tính xác suất của biến cố đối bằng công thức \(P\left( A \right) = \frac{{n(A)}}{{n(\Omega )}}\)

Bước 4: Xác định xác suất của biến cố ban đầu

Lời giải chi tiết

Tổng số kết quả có thể xảy ra của phép thử là \(n(\Omega ) = {6^2}\)

a) Gọi biến cố A “Tổng số chấm xuất hiện lớn hơn hoặc bằng 10” là biến cố đối của biến cố “Tổng số chấm xuất hiện nhỏ hơn 10”

A xảy ra khi số chấm xuất hiện là 5 hoặc 6. Số kết quả thuận lợi cho A là \(n(A) = {2^2}\)

Xác suất của biến cố A là \(P(A) = \frac{{{2^2}}}{{{6^2}}} = \frac{1}{9}\)

Vậy xác suất của biến cố “Tổng số chấm xuất hiện nhỏ hơn 10” là \(1 - \frac{1}{9} = \frac{8}{9}\)

b) Gọi biến cố A: “Tích số chấm xuất hiện không chia hết cho 3” là biến cố đối của biến cố ‘“Tích số chấm xuất hiện chia hết cho 3”

A xảy ra khi mặt xuất hiện trên hai con xúc xắc đều xuất hiện số chấm không chia hết cho 3. Số kết quả thuận lợi cho A là: \(n(A) = {4^2}\)

Xác suất của biến cố A là: \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{{4^2}}}{{{6^2}}} = \frac{4}{9}\)

Vậy xác suất của biến cố “Tích số chấm xuất hiện chia hết cho 3” là \(1 - \frac{4}{9} = \frac{5}{9}\)



Từ khóa phổ biến