Giải bài 2 trang 70 SGK Toán 10 tập 2 – Chân trời sáng tạo

Viết phương trình chính tắc của các đường conic dưới đây. Gọi tên và tìm tọa độ của các tiêu điểm của chúng


Đề bài

Viết phương trình chính tắc của các đường conic dưới đây. Gọi tên và tìm tọa độ của các tiêu điểm của chúng

a) \(({C_1}):4{x^2} + 16{y^2} = 1\)

b) \(({C_2}):16{x^2} - 4{y^2} = 144\)

c) \(({C_3}):x = \frac{1}{8}{y^2}\)

Phương pháp giải - Xem chi tiết

Bước 1: Xác định dạng phương trình của đường conic nào

          +) Có dạng \(a{x^2} + b{y^2} = 1\) là dạng đường elip

          +) Có dạng \(a{x^2} - b{y^2} = 1\) là dạng đường hypebol

          +) Có dạng \({y^2} = ax\) là dạng đường parabol

Bước 2: Đưa về phương trình chính tắc và tìm tọa độ biết phương trình chính tắc có dạng

          +) \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) là đường elip

          +) \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) là đường hypebol

          +) \({y^2} = 2px\) là đường parabol

Bước 3: Xác định tiêu điểm của các đường conic

          +) Elip: \({F_1}\left( { - c;0} \right)\) và \({F_2}\left( {c;0} \right)\)

          +) Hypebol: \({F_1}\left( { - c;0} \right)\) và \({F_2}\left( {c;0} \right)\)

          +) Parabol: \(F\left( {\frac{p}{2};0} \right)\)

Lời giải chi tiết

a) Ta thấy phương trình có dạng \(a{x^2} + b{y^2} = 1\) nên phương trình \(({C_1}):4{x^2} + 16{y^2} = 1\) là phương trình của đường elip

Từ phương trình \(({C_1}):4{x^2} + 16{y^2} = 1\) ta có phương trình chính tắc là \(({C_1}):\frac{{{x^2}}}{{\frac{1}{4}}} + \frac{{{y^2}}}{{\frac{1}{{16}}}} = 1\)

Từ phương trình chính tắc ta có: \(a = \frac{1}{2},b = \frac{1}{4} \Rightarrow c = \sqrt {{a^2} - {b^2}}  = \sqrt {{{\left( {\frac{1}{2}} \right)}^2} - {{\left( {\frac{1}{4}} \right)}^2}}  = \frac{{\sqrt 3 }}{4}\)

Suy ra tiêu điểm của elip này là \({F_1}\left( { - \frac{{\sqrt 3 }}{4};0} \right)\) và \({F_2}\left( {\frac{{\sqrt 3 }}{4};0} \right)\)

b) Ta thấy phương trình có dạng \(a{x^2} - b{y^2} = 1\) nên phương trình \(({C_2}):16{x^2} - 4{y^2} = 144\) là phương trình của đường hypebol

Từ phương trình \(({C_2}):16{x^2} - 4{y^2} = 144\) ta có phương trình chính tắc là \(({C_1}):\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{16}} = 1\)

Từ phương trình chính tắc ta có: \(a = 3,b = 4 \Rightarrow c = \sqrt {{a^2} + {b^2}}  = \sqrt {{3^2} + {4^2}}  = 5\)

Suy ra tiêu điểm của hypebol này là \({F_1}\left( { - 5;0} \right)\) và \({F_2}\left( {5;0} \right)\)

c) Phương trình \(({C_3}):x = \frac{1}{8}{y^2}\) có dạng \({y^2} = ax\) nên phương trình này là phương trình của parabol

Ta có phương trình chính tắc là \({y^2} = 8x\)

Từ phương trình chính tắc ta có: \(2p = 8 \Rightarrow p = 4\)

Suy ra tiêu điểm là \(F(2;0)\)



Từ khóa phổ biến