Giải Bài 2 trang 39 SGK Toán 8 tập 1 – Chân trời sáng tạo
Thực hiện các phép chia phân thức sau:
Đề bài
Thực hiện các phép chia phân thức sau:
a) \(\dfrac{{5x}}{{4{y^3}}}:\left( { - \dfrac{{{x^4}}}{{20y}}} \right)\)
b) \(\dfrac{{{x^2} - 16}}{{x + 4}} :\dfrac{{2x - 8}}{x}\)
c) \(\dfrac{{2x + 6}}{{{x^3} - 8}}:\dfrac{{{{\left( {x + 3} \right)}^3}}}{{2x - 4}}\)
Phương pháp giải - Xem chi tiết
Thực hiện phân tích các đa thức ở tử và mẫu thành nhân tử (nếu cần thiết), sau đó nhân phân thức thứ nhất với nghịch đảo của phân thức thứ hai rồi thực hiện rút gọn.
Lời giải chi tiết
a)
\(\dfrac{{5x}}{{4{y^3}}}:\left( { - \dfrac{{{x^4}}}{{20y}}} \right)\) \( = \dfrac{{5x}}{{4{y^3}}} \cdot \dfrac{{ - 20y}}{{{x^4}}} = \dfrac{{ - 100xy}}{{4{x^4}{y^3}}} = \dfrac{{ - 25}}{{{x^3}{y^2}}}\)
b)
\(\dfrac{{{x^2} - 16}}{{x + 4}} :\dfrac{{2x - 8}}{x}\) \( = \dfrac{{\left( {x - 4} \right)\left( {x + 4} \right)}}{{x + 4}} \cdot \dfrac{x}{{2x - 8}} = \dfrac{{\left( {x - 4} \right)\left( {x + 4} \right)}}{{x + 4}} \cdot \dfrac{x}{{2\left( {x - 4} \right)}} = \dfrac{x}{2}\)
c)
\(\dfrac{{2x + 6}}{{{x^3} - 8}}:\dfrac{{{{\left( {x + 3} \right)}^3}}}{{2x - 4}}\) \( = \dfrac{{2\left( {x + 3} \right)}}{{\left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right)}} \cdot \dfrac{{2\left( {x - 2} \right)}}{{{{\left( {x + 3} \right)}^3}}} = \dfrac{4}{{{{\left( {x + 3} \right)}^2}\left( {{x^2} + 2x + 4} \right)}}\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải Bài 2 trang 39 SGK Toán 8 tập 1 – Chân trời sáng tạo timdapan.com"