Giải bài 1.6 trang 7 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Chứng minh các đẳng thức sau:
Đề bài
Chứng minh các đẳng thức sau:
a) \({\cos ^4}x - {\sin ^4}x = 2{\cos ^2}x - 1\);
b) \({\tan ^2}x - {\sin ^2}x = {\tan ^2}x.{\sin ^2}x\);
c) \({(\sin x + \cos x)^2} + {(\sin x - \cos x)^2} = 2\).
Phương pháp giải - Xem chi tiết
Sử dụng các hằng đẳng thức đáng nhớ và áp dụng công thức \({\sin ^2}a + {\cos ^2}a = 1\), \({\mathop{\rm tanx}\nolimits} = \frac{{sinx}}{{\cos x}}\) để biến đổi linh hoạt vế trái thành vế phải.
Lời giải chi tiết
a) Ta có
\(\begin{array}{l}VT = {\cos ^4}x - {\sin ^4}x\\\,\,\,\,\,\,\,\,\,\, = \left( {{{\cos }^2}x - {{\sin }^2}x} \right)\left( {{{\cos }^2}x + {{\sin }^2}x} \right)\\\,\,\,\,\,\,\,\,\,\, = ({\cos ^2}x - {\sin ^2}x).1 = {\cos ^2}x - {\sin ^2}x\\\,\,\,\,\,\,\,\,\,\, = {\cos ^2}x - (1 - {\cos ^2}x) = {\cos ^2}x - 1 + {\cos ^2}x\\\,\,\,\,\,\,\,\,\,\, = 2{\cos ^2}x - 1 = {\rm{VP}}\end{array}\)
b) Ta có
\(\begin{array}{l}VT = {\tan ^2}x - {\sin ^2}x = \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} - {\sin ^2}x\\\,\,\,\,\,\,\,\,\, = \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} - \frac{{{{\sin }^2}x.{{\cos }^2}x}}{{{{\cos }^2}x}} = \frac{{{{\sin }^2}x - {{\sin }^2}x{{\cos }^2}x}}{{{{\cos }^2}x}}\\\,\,\,\,\,\,\,\,\, = \frac{{{{\sin }^2}x(1 - {{\cos }^2}x)}}{{{{\cos }^2}x}} = \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}}.(1 - {\cos ^2}x)\\\,\,\,\,\,\,\,\,\, = {\tan ^2}x.{\sin ^2}x = {\rm{VP}}{\rm{.}}\end{array}\)
c) Ta có
\(\begin{array}{l}VT = {(\sin x + \cos x)^2} + {(\sin x - \cos x)^2}\\\,\,\,\,\,\,\,\,\,\, = {\sin ^2}x + 2\sin x{\mathop{\rm cosx}\nolimits} + co{s^2}x + {\sin ^2}x - 2\sin x\cos x + {\cos ^2}x\\\,\,\,\,\,\,\,\,\,\, = 2{\sin ^2}x + 2{\cos ^2}x = 2({\sin ^2}x + {\cos ^2}x) = 2.1 = 2 = {\rm{VP}}{\rm{.}}\end{array}\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài 1.6 trang 7 sách bài tập toán 11 - Kết nối tri thức với cuộc sống timdapan.com"