Giải Bài 1.42 trang 27 SGK Toán 8 tập 1 - Kết nối tri thức

Khi chia đa thức (8{x^3}{y^2} - 6{x^2}{y^3}) cho đơn thức ( - 2xy) ta được kết quả là A. ( - 4{x^2}y + 3x{y^2}) B. ( - 4x{y^2} + 3{x^2}y) C. ( - 10{x^2}y + 4x{y^2}) D. ( - 10{x^2}y + 4x{y^2})


Đề bài

Khi chia đa thức \(8{x^3}{y^2} - 6{x^2}{y^3}\) cho đơn thức \( - 2xy\) ta được kết quả là
A. \( - 4{x^2}y + 3x{y^2}\)
B. \( - 4x{y^2} + 3{x^2}y\)
C. \( - 10{x^2}y + 4x{y^2}\)
D. \( - 10{x^2}y + 4x{y^2}\)

Phương pháp giải - Xem chi tiết

+ Muốn chia đa thức A cho đơn thức B ta chia từng hạng tử của A cho B rồi cộng các kết quả với nhau.

Lời giải chi tiết

\(\left( {8{x^3}{y^2} - 6{x^2}{y^3}} \right):\left( { - 2xy} \right) = 8{x^3}{y^2}:\left( { - 2xy} \right) - 6{x^2}{y^3}:\left( { - 2xy} \right) =  - 4{x^2}y + 3x{y^2}\)

Chọn A.



Bài học liên quan

Từ khóa phổ biến