Giải bài 1.21 trang 18 SGK Toán 8 tập 1 - Kết nối tri thức

Cho hai đa thức:


Đề bài

Cho hai đa thức:

\(A = 7xy{z^2} - 5x{y^2}z + 3{x^2}yz - xyz + 1;B = 7{x^2}yz - 5x{y^2}z + 3xy{z^2} - 2.\)

a)      Tìm đa thức C sao cho A-C=B;

b)      Tìm đa thức D sao cho A+D=B;

c)      Tìm đa thức E sao cho E-A=B;

Phương pháp giải - Xem chi tiết

Sử dụng bài toán ngược tìm C,D,E. Sau đó sử dụng tính chất giao hoán, kết hợp các hạng tử đồng dạng với nhau rồi thu gọn.

Lời giải chi tiết

a)       

\(\begin{array}{l}A - C = B\\ \Rightarrow C = A - B = 7xy{z^2} - 5x{y^2}z + 3{x^2}yz - xyz + 1 - \left( {7{x^2}yz - 5x{y^2}z + 3xy{z^2} - 2} \right)\\ = 7xy{z^2} - 5x{y^2}z + 3{x^2}yz - xyz + 1 - 7{x^2}yz + 5x{y^2}z - 3xy{z^2} + 2\\ = \left( {7xy{z^2} - 3xy{z^2}} \right) + \left( { - 5x{y^2}z + 5x{y^2}z} \right) + \left( {3{x^2}yz - 7{x^2}yz} \right) - xyz + \left( {1 + 2} \right)\\ = 4xy{z^2} - 4{x^2}yz - xyz + 3\end{array}\)

b)

\(\begin{array}{l}A + D = B\\ \Rightarrow D = B - A =  - \left( {A - B} \right) =  - C =  - 4xy{z^2} + 4{x^2}yz + xyz - 3.\end{array}\)

c)

\(\begin{array}{l}E - A = B\\ \Rightarrow E = A + B = A = 7xy{z^2} - 5x{y^2}z + 3{x^2}yz - xyz + 1 + 7{x^2}yz - 5x{y^2}z + 3xy{z^2} - 2\\ = \left( {7xy{z^2} + 3xy{z^2}} \right) + \left( { - 5x{y^2}z - 5x{y^2}z} \right) + \left( {3{x^2}yz + 7{x^2}yz} \right) - xyz + \left( {1 - 2} \right)\\ = 10xy{z^2} - 10x{y^2}z + 10{x^2}yz - xyz - 1\end{array}\)



Bài học liên quan

Từ khóa phổ biến