Đề số 1 - Đề kiểm tra học kì 2 - Toán 6

Đáp án và lời giải chi tiết Đề số 1 - Đề kiểm tra học kì 2 - Toán 6


Đề bài

I: Phần trắc nghiệm (1 điểm) Chọn chữ cái đứng trước câu trả lời đúng:

Câu 1: Phân số lớn nhất trong các phân số \(\dfrac{4}{{ - 9}};\dfrac{{ - 2}}{9};\dfrac{{ - 7}}{9};\dfrac{5}{{ - 9}}\) là:

A. \(\dfrac{4}{{ - 9}}\)       B. \(\dfrac{{ - 2}}{9}\)      C. \(\dfrac{{ - 7}}{9}\)       D. \(\dfrac{5}{{ - 9}}\)

Câu 2: \(\dfrac{5}{7}\) của 21 bằng:

A. 9        B. 49      C. - 49          D. 21

Câu 3: Nếu Om là tia phân giác \(\widehat {xOy}\) và \(\widehat {xOm} = {60^ \circ }\) thì số đo \(\widehat {xOy}\)là:

A. \({90^ \circ }\)      B. \({60^ \circ }\)      C. \({30^ \circ }\)      D. \({120^ \circ }\)

Câu 4: Tia Oa là tia phân giác của \(\widehat {mOn}\) khi:

A. \(\widehat {mOa} + \widehat {nOa} = \widehat {mOn}\)                                  

B. \(\widehat {mOa} = \widehat {nOa}\)                

C. \(\widehat {mOa} = \widehat {nOa} = \dfrac{{\widehat {mOn}}}{2}\)             

D. \(\widehat {mOa} + \widehat {nOa} = 2.\widehat {mOn}\)

II: Phần tự luận (9 điểm)

Bài 1: (2 điểm) Thực hiện tính (tính nhanh nếu có thể):

a) \( - 1,6:\left( {1 + \dfrac{3}{5}} \right)\)                                       

b) \( - 90 - \left[ {24 + {{\left( {4 - 12} \right)}^2}} \right]:{\left( { - 2} \right)^3}\)                   

c) \(1,25.\dfrac{8}{{21}} - 1\dfrac{1}{4}.\dfrac{3}{{21}} + \dfrac{5}{4}.\dfrac{{16}}{{21}}\)

d) \(\dfrac{{{{\left( { - 4} \right)}^3}.\left| { - 3} \right|}}{7}.\left( {\dfrac{{ - 8}}{{13}}:\dfrac{3}{7} + \dfrac{{ - 5}}{{13}}:\dfrac{3}{7}} \right)\)

Bài 2: (2,5 điểm) Tìm x biết

a) \(\dfrac{{ - 3}}{5}x = \dfrac{2}{3}\)                           

b) \(\left( {3,5 - 3x} \right).1\dfrac{2}{5} = \dfrac{7}{{10}}\)      

c) \(\left| {x + \dfrac{1}{3}} \right| - 1 = \dfrac{{{{\left( { - 3} \right)}^2}}}{6}\)                     

d) \(x + \dfrac{1}{5}x - \dfrac{1}{3}x = \dfrac{{ - 26}}{5}\)

Bài 3: (2 điểm) Sơ kết học kì I, ba lớp 6A, 6B, 6C có tổng số 48 học sinh giỏi. Số học sinh giỏi lớp 6B bằng \(\dfrac{1}{2}\) tổng số, số học sinh giỏi lớp 6A bằng \(\dfrac{3}{8}\) số học sinh còn lại. Tính số học sinh giỏi mỗi lớp.

Bài 4: (2 điểm) Trên cùng một nửa mặt phẳng bờ chứa tia Ox, vẽ tia Oy và Ot sao cho \(\widehat {xOy} = {20^ \circ }\) và \(\widehat {xOt} = {60^ \circ }\)

a. Tính \(\widehat {yOt}\)

b. Tia Oy có phải là tia phân giác của \(\widehat {xOt}\) không?

c. Gọi Om là tia đối tia Ox. Tính \(\widehat {mOt}.\) 

d. Gọi tia Oa là phân giác của \(\widehat {mOt}\). Tính \(\widehat {aOy}.\) 

Bài 5: (0,5 điểm) Cho \(S = \dfrac{5}{{{2^2}}} + \dfrac{5}{{{3^2}}} + \dfrac{5}{{{4^2}}} + ... + \dfrac{5}{{{{100}^2}}}.\) Chứng tỏ rằng \(2 < S < 5\). 

Lời giải chi tiết

Phần trắc nghiệm

Câu 1: B      Câu 2: A      Câu 3: D         Câu 4: C

Phần tự luận

Bài 1:

Phương pháp:

Thực hiện đúng thứ tự: ngoặc tròn => ngoặc vuông => ngoặc nhọn (\(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\) )

Lũy thừa=> nhân chia => cộng trừ

Lời giải:

a) \( - 1,6:\left( {1 + \dfrac{3}{5}} \right) \)\(= \dfrac{{ - 16}}{{10}}:\left( {\dfrac{5}{5} + \dfrac{3}{5}} \right) \)\(= \dfrac{{ - 8}}{5}:\dfrac{8}{5} =  - 1\)

b)\( - 90 - \left[ {24 + {{\left( {4 - 12} \right)}^2}} \right]:{\left( { - 2} \right)^3} \)\(=  - 90 - \left( {24 + {8^2}} \right):\left( { - 8} \right)\)\( =  - 90 - \left( {24 + 64} \right):\left( { - 8} \right)\) \( =  - 90 - 88:\left( { - 8} \right) \)\(=  - 90 - \left( { - 11} \right) =  - 90 + 11 =  - 79\)

c) \(1,25.\dfrac{8}{{21}} - 1\dfrac{1}{4}.\dfrac{3}{{21}} + \dfrac{5}{4}.\dfrac{{16}}{{21}} \)\(= \dfrac{5}{4}.\dfrac{8}{{21}} - \dfrac{5}{4}.\dfrac{3}{{21}} + \dfrac{5}{4}.\dfrac{{16}}{{21}}\)

\( = \dfrac{5}{4}\left( {\dfrac{8}{{21}} - \dfrac{3}{{21}} + \dfrac{{16}}{{21}}} \right)\)\( = \dfrac{5}{4}\left( {\dfrac{{8 - 3 + 16}}{{21}}} \right)\) \( = \dfrac{5}{4}.\dfrac{{21}}{{21}} \)\(= \dfrac{5}{4}.1 = \dfrac{5}{4}\)

d) \(\dfrac{{{{\left( { - 4} \right)}^3}.\left| { - 3} \right|}}{7}.\left( {\dfrac{{ - 8}}{{13}}:\dfrac{3}{7} + \dfrac{{ - 5}}{{13}}:\dfrac{3}{7}} \right)\)\( = \dfrac{{\left( { - 64} \right).3}}{7}.\left( {\dfrac{{ - 8}}{{13}}.\dfrac{7}{3} + \dfrac{{ - 5}}{{13}}.\dfrac{7}{3}} \right) \)\(= \dfrac{{\left( { - 64} \right).3}}{7}.\left( {\dfrac{{ - 8}}{{13}} + \dfrac{{ - 5}}{{13}}} \right).\dfrac{7}{3}\)

\( = \dfrac{{\left( { - 64} \right).3}}{7}.\left( {\dfrac{{ - 13}}{{13}}} \right).\dfrac{7}{3} \)\(= \dfrac{{\left( { - 64} \right).3}}{7}.\dfrac{7}{3}.\left( { - 1} \right) \)\(= \dfrac{{\left( { - 64} \right).3.7.\left( { - 1} \right)}}{{7.3}} = 64\)

Bài 2:

 Phương pháp:

Sử dụng các qui tắc chuyển vế đưa về dạng tìm \(x\) quen thuộc

Sử dụng \(\left| a \right| = \left\{ \begin{array}{l}a\,khi\,a \ge 0\\ - a\,\,khi\,a < 0\end{array} \right.\)

Lời giải:

a) \(\dfrac{{ - 3}}{5}x = \dfrac{2}{3}\)

\(x = \dfrac{2}{3}:\left( { - \dfrac{3}{5}} \right)\)

\(x = \dfrac{2}{3}.\left( {\dfrac{{ - 5}}{3}} \right)\)

\(x =  - \dfrac{{10}}{9}\)

b)

\(\begin{array}{l}\left( {3,5 - 3x} \right).1\dfrac{2}{5} = \dfrac{7}{{10}}\\\left( {3,5 - 3x} \right).\dfrac{7}{5} = \dfrac{7}{{10}}\\3,5 - 3x = \dfrac{7}{{10}}:\dfrac{7}{5}\\\dfrac{7}{2} - 3x = \dfrac{7}{{10}}.\dfrac{5}{7}\\\dfrac{7}{2} - 3x = \dfrac{1}{2}\\3x = \dfrac{7}{2} - \dfrac{1}{2}\\3x = 3\\x = 1\end{array}\)

c)

\(\begin{array}{l}\left| {x + \dfrac{1}{3}} \right| - 1 = \dfrac{{{{\left( { - 3} \right)}^2}}}{6}\\\left| {x + \dfrac{1}{3}} \right| - 1 = \dfrac{9}{6}\\\left| {x + \dfrac{1}{3}} \right| = \dfrac{3}{2} + 1\\\left| {x + \dfrac{1}{3}} \right| = \dfrac{5}{2}\end{array}\)

Trường hợp 1:

\(\begin{array}{l}x + \dfrac{1}{3} = \dfrac{5}{2}\\x = \dfrac{5}{2} - \dfrac{1}{3} \\x= \dfrac{13}{6}\end{array}\)

Trường hợp 2:

\(\begin{array}{l}x + \dfrac{1}{3} =  - \dfrac{5}{2}\\x = \dfrac{{ - 5}}{2} - \dfrac{1}{3} \\x= \dfrac{{ - 17}}{6}\end{array}\)

d) \(x + \dfrac{1}{5}x - \dfrac{1}{3}x = \dfrac{{ - 26}}{5}\)

\(\begin{array}{l}x\left( {1 + \dfrac{1}{5} - \dfrac{1}{3}} \right) = \dfrac{{ - 26}}{5}\\x.\dfrac{{13}}{{15}} = \dfrac{{ - 26}}{5}\\x =  - 6\end{array}\)

Bài 3:

Phương pháp:

Sử dụng ba bài toán cơ bản của phân số

Lời giải:

Số học sinh giỏi lớp \(6B\) là \(48.\dfrac{1}{2} = 24\) học sinh

Số học sinh giỏi hai lớp 6A và 6C là \(48 - 24 = 24\) học sinh

Số học sinh giỏi lớp 6A bằng \(\dfrac{3}{8}.24 = 9\) học sinh

Số học sinh giỏi lớp 6C là \(24 - 9 = 15\) học sinh

Bài 4:

Phương pháp:

Sử dụng công thức cộng góc và tính chất tia phân giác của một góc.

Lời giải:

  

a) Vì \(\widehat {xOy} < \widehat {xOt}\,\left( {20^\circ  < 60^\circ } \right)\) nên tia \(Oy\) nằm giữa hai tia \(Ox\) và \(Ot\)

Suy ra \(\widehat {xOy} + \widehat {yOt} = \widehat {xOt}\)  hay \(20^\circ  + \widehat {yOt} = 60^\circ \) nên \(\widehat {yOt} = 60^\circ  - 20^\circ  = 40^\circ \)

b) Vì \(\widehat {xOy} < \widehat {yOt}\,\left( {20^\circ  < 40^\circ } \right)\) nên tia \(Oy\) không phải tia phân giác của \(\widehat {xOt}\)

c) Ta có \(\widehat {xOt} + \widehat {mOt} = 180^\circ \) (hai góc kề bù) nên \(\widehat {mOt} = 180^\circ  - \widehat {xOt} = 180^\circ  - 60^\circ  = 120^\circ \)

d) Ta có \(\widehat {aOt} = \dfrac{{\widehat {mOt}}}{2} = \dfrac{{120^\circ }}{2} = 60^\circ \) (do \(Oa\) là phân giác \(\widehat {mOt}\) )

Vì \(Oy\) nằm giữa \(Ot\) và \(Oz\); \(Oa\) nằm giữa tia \(Ot\) và \(Om\) mà \(\widehat {xOt}\) và \(\widehat {tOm}\) là hai góc kề bù nên tia \(Ot\) nằm giữa hai tia \(Oa\) và \(Oy\) .

Suy ra \(\widehat {tOy} + \widehat {aOt} = \widehat {aOy}\) hay \(\widehat {aOy} = 40^\circ  + 60^\circ  = 100^\circ .\)

Bài 5:

Phương pháp:

Chỉ ra S>2 và S

Lời giải: 

 

Ta có:

\(\begin{array}{l}S = \dfrac{5}{{{2^2}}} + \dfrac{5}{{{3^2}}} + \dfrac{5}{{{4^2}}} + ... + \dfrac{5}{{{{100}^2}}}.\\ = 5.\left( {\dfrac{1}{{2.2}} + \dfrac{1}{{3.3}} + \dfrac{1}{{4.4}} + ... + \dfrac{1}{{100.100}}} \right)\\ > 5.\left( {\dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + \dfrac{1}{{4.5}} + ... + \dfrac{1}{{100.101}}} \right)\\ > 5.\left( {\dfrac{1}{2} - \dfrac{1}{3} + \dfrac{1}{3} - \dfrac{1}{4} + ... + \dfrac{1}{{100}} - \dfrac{1}{{101}}} \right)\\ > 5.\left( {\dfrac{1}{2} - \dfrac{1}{{101}}} \right) > \dfrac{5}{2} > 2\\ \Rightarrow S > 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\end{array}\)

\(\begin{array}{l}S = \dfrac{5}{{{2^2}}} + \dfrac{5}{{{3^2}}} + \dfrac{5}{{{4^2}}} + ... + \dfrac{5}{{{{100}^2}}}.\\ = 5.\left( {\dfrac{1}{{2.2}} + \dfrac{1}{{3.3}} + \dfrac{1}{{4.4}} + ... + \dfrac{1}{{100.100}}} \right)\\ < 5.\left( {\dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + ... + \dfrac{1}{{99.100}}} \right)\\ < 5.\left( {1 - \dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{3} + \dfrac{1}{3} - \dfrac{1}{4} + ... + \dfrac{1}{{99}} - \dfrac{1}{{100}}} \right)\\ < 5.\left( {1 - \dfrac{1}{{100}}} \right) < 5\\ \Rightarrow S < 5\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array}\)

Từ (1) và (2) : \(2 < S < 5\) (đpcm).