Câu 43 trang 219 SGK Đại số và Giải tích 11 Nâng cao

Chứng minh rằng với mọi n ≥ 1, ta có :


Chứng minh rằng với mọi \(n ≥ 1\), ta có :

LG a

Nếu \(f\left( x \right) = \frac{1}{x}\,\text{ thì }\,{f^{\left( n \right)}}\left( x \right) = \frac{{{{\left( { - 1} \right)}^n}.n!}}{{{x^{n + 1}}}}\)

Phương pháp giải:

Chứng minh bằng phương pháp qui nạp.

Lời giải chi tiết:

Cho \(f\left( x \right) = \frac{1}{x}\left( {x \ne 0} \right).\) Ta hãy chứng minh công thức :

\({f^{\left( n \right)}}\left( x \right) = \frac{{{{\left( { - 1} \right)}^n}.n!}}{{{x^{n + 1}}}}\left( {\forall x \ge 1} \right)\,\,\left( 1 \right)\) bằng phương pháp qui nạp.

+ Với \(n = 1\), ta có : \({f^{\left( n \right)}}\left( x \right) = f'\left( x \right) =  - \frac{1}{{{x^2}}}\) \(\text{ và }\,\frac{{{{\left( { - 1} \right)}^n}.n!}}{{{x^{n + 1}}}} =  - \frac{1}{{{x^2}}}\)

Suy ra (1) đúng khi n = 1.

+ Giả sử (1) đúng cho trường hợp \(n = k (k ≥ 1)\), tức là : \({f^{\left( k \right)}}\left( x \right) = \frac{{{{\left( { - 1} \right)}^k}.k!}}{{{x^{k + 1}}}}\),

Ta phải chứng minh (1) cũng đúng cho trường hợp \(n = k + 1\), tức là :

\({f^{\left( {k + 1} \right)}}\left( x \right) = \frac{{{{\left( { - 1} \right)}^{k + 1}}.\left( {k + 1} \right)!}}{{{x^{k + 2}}}}\) 

Thật vậy, ta có :

\({f^{\left( {k + 1} \right)}}\left( x \right) = \left[ {{f^{\left( k \right)}}\left( x \right)} \right]' \)

\( = \left[ {\frac{{{{\left( { - 1} \right)}^k}.k!}}{{{x^{k + 1}}}}} \right]' \) \(= {\left( { - 1} \right)^k}.k!\frac{{ - \left( {{x^{k + 1}}} \right)'}}{{{{\left( {{x^{k + 1}}} \right)}^2}}} \) \(= {\left( { - 1} \right)^k}.k!.\frac{{\left( { - 1} \right).\left( {k + 1} \right){x^k}}}{{{x^{2k + 2}}}} \) \( = \frac{{{{\left( { - 1} \right)}^{k + 1}}.\left( {k + 1} \right)!}}{{{x^{k + 2}}}}\)

Vậy ta có đpcm.


LG b

Nếu  \(f\left( x \right) = \cos x\,\text{ thì }\,{f^{\left( {4n} \right)}}\left( x \right) = \cos x.\)

Lời giải chi tiết:

Cho \(f(x) = \cos x\). Ta hãy chứng minh công thức :

\({f^{\left( {4n} \right)}}\left( x \right) = \cos x\left( {\forall n \ge 1} \right)\,\,\left( 2 \right)\) bằng phương pháp qui nạp.

Ta có:  \(f'\left( x \right) =  - \sin x;f"\left( x \right) =  - \cos x;\)

\(f'''\left( x \right) = \sin x;{f^{\left( 4 \right)}}\left( x \right) = \cos x\)

+ Với n = 1 thì  \({f^{\left( {4n} \right)}}\left( x \right) = {f^{\left( 4 \right)}}\left( x \right) = \cos x\)

Suy ra (2) đúng khi n = 1

+ Giả sử (2) đúng cho trường hợp \(n = k (k ≥ 1)\), tức là :  \({f^{\left( {4k} \right)}}\left( x \right) = \cos x,\)

Ta phải chứng minh (2) cũng đúng cho trường hợp \(n = k + 1\), tức là phải chứng minh :  

\({f^{\left( {4\left( {k + 1} \right)} \right)}}\left( x \right) = \cos x\) \(\left( {hay\,{f^{\left( {4k + 4} \right)}}\left( x \right) = \cos x} \right)\)

Thật vậy, vì : 

\(\begin{array}{l}
{f^{\left( {4k} \right)}}\left( x \right) = \cos x \\ \text{ nên }\,{f^{\left( {4k + 1} \right)}}\left( x \right) = - \sin x\\
{f^{\left( {4k + 2} \right)}}\left( x \right) = - \cos x\\
{f^{\left( {4k + 3} \right)}}\left( x \right) = \sin x\\
{f^{\left( {4k + 4} \right)}}\left( x \right) = \cos x
\end{array}\)

Vậy ta có đpcm.


LG c

Nếu \(f\left( x \right) = \sin ax\) (a là hằng số) thì  \({f^{\left( {4n} \right)}}\left( x \right) = {a^{4n}}\sin ax.\)

Lời giải chi tiết:

Ta có: 

\(\begin{array}{l}
f'\left( x \right) = a{\mathop{\rm cosax}\nolimits} \\
f"\left( x \right) = - {a^2}\sin ax\\
{f^{\left( 3 \right)}}\left( x \right) = - {a^3}\cos ax\\
{f^{\left( 4 \right)}}\left( x \right) = {a^4}\sin ax
\end{array}\)

Với \(n = 1\) ta có \({f^{\left( 4 \right)}}\left( x \right) = {a^4}\sin ax,\) đẳng thức đúng với \(n = 1\)

Giả sử đẳng thức đúng với \(n = k\) tức là :  \({f^{\left( {4k} \right)}}\left( x \right) = {a^{4k}}\sin ax\)

Với \(n = k + 1\) ta có  \({f^{\left( {4k + 4} \right)}}\left( x \right) = {\left( {{f^{\left( {4k} \right)}}} \right)^{\left( 4 \right)}}\left( x \right) \) \(= {\left( {{a^{4k}}\sin ax} \right)^{\left( 4 \right)}}\)

Do \({f^{\left( {4k} \right)}}\left( x \right) = {a^{4k}}\sin ax\) 

\(\begin{array}{l}
{f^{\left( {4k + 1} \right)}}\left( x \right) = {a^{4k + 1}}\cos ax\\
{f^{\left( {4k + 2} \right)}}\left( x \right) = - {a^{4k + 2}}\sin ax\\
{f^{\left( {4k + 3} \right)}}\left( x \right) = - {a^{4k + 3}}\cos ax\\
{f^{\left( {4k + 4} \right)}}\left( x \right) = {a^{4k + 4}}\sin ax
\end{array}\)

Vậy đẳng thức đúng với \(n = k + 1\), do đó đẳng thức đúng với mọi n.

Bài giải tiếp theo
Câu 44 trang 219 SGK Đại số và Giải tích 11 Nâng cao
Câu 45 trang 219 SGK Đại số và Giải tích 11 Nâng cao
Câu 46 trang 219 SGK Đại số và Giải tích 11 Nâng cao
Câu 47 trang 219 SGK Đại số và Giải tích 11 Nâng cao
Câu 48 trang 219 SGK Đại số và Giải tích 11 Nâng cao

Video liên quan



Từ khóa