Câu 11 trang 80 SGK Hình học 11 Nâng cao

Cho tứ diện đều ABCD có cạnh bằng a, điểm M trên cạnh AB sao cho AM = m (0 < m < a). Khi đó, diện tích thiết diện của hình tứ diện khi cắt bởi mặt phẳng qua M và song song với mp(ACD) là:


Đề bài

Cho tứ diện đều ABCD có cạnh bằng a, điểm M trên cạnh AB sao cho AM = m (0 < m < a). Khi đó, diện tích thiết diện của hình tứ diện khi cắt bởi mặt phẳng qua M và song song với mp(ACD) là:

A. \({{{m^2}\sqrt 3 } \over 4}\)

B. \({{{{\left( {a - m} \right)}^2}\sqrt 2 } \over 2}\)

C. \({{{{\left( {a + m} \right)}^2}} \over 4}\)

D. \({{{{\left( {a - m} \right)}^2}\sqrt 3 } \over 4}\)

Lời giải chi tiết

Vẽ MN // AC (N ϵ BC)

MP // AD (P ϵ BD)

Thiết diện cần tìm là ΔMNP

Ta có: \(\Delta MNP\infty \Delta ACD\) tỉ số \({{MP} \over {AD}} = {{BM} \over {AB}} = {{a - m} \over a}\)

\({S_{MNP}} = {\left( {{{a - m} \over a}} \right)^2}.{S_{ABC}} = {\left( {{{a - m} \over a}} \right)^2}.{{{a^2}\sqrt 3 } \over 4} = {\left( {a - m} \right)^2}{{\sqrt 3 } \over 4}\)

Chọn (D)