Bài tập 13 trang 40 Tài liệu dạy – học Toán 7 tập 1

Giải bài tập Chứng minh từ tỉ lệ thức


Chứng minh từ tỉ lệ thức \({a \over b} = {c \over d}\) thì ta suy ra được các tỉ lệ thức sau:

\({{a - b} \over {a + b}} = {{c - d} \over {c + d}}\)  (với \(a + b \ne 0;\,\,\,c + d \ne 0\))

Lời giải:

Cách 1:

Đặt \({a \over b} = {c \over d} = k \Rightarrow a = bk.c = dk\)

Ta có:

\(\left\{ \matrix{  {{a - b} \over {a + b}} = {{bk - b} \over {bk + b}} = {{b(k - 1)} \over {b(k + a)}} = {{k - 1} \over {k + 1}}(b \ne 0) \hfill \cr  {{c - d} \over {c + d}} = {{dk - d} \over {dk + d}} = {{d(k - 1)} \over {d(k + 1)}} = {{k - 1} \over {k + 1}}(d \ne 0) \hfill \cr}  \right.\)

\( \Rightarrow {{a - b} \over {a + b}} = {{c - d} \over {c + d}}\)  (với \(a + b \ne 0,c + d \ne 0)\)

Cách 2:

Nếu a = b thì c = d. Ta có \({{a - b} \over {a + b}} = {{c - d} \over {c + d}}( = 0)\)

Nếu \(a \ne b\)  thì \(c \ne d\) . Ta có \({a \over b} = {c \over d} \Rightarrow {a \over c} = {b \over d} \Rightarrow {{a - b} \over {c - d}} = {{a + b} \over {c + d}} \Rightarrow {{a - b} \over {a + b}} = {{c - d} \over {c + d}}\)



Từ khóa phổ biến