Bài 52 trang 135 SGK Đại số 10 nâng cao

Chứng minh định lý về dấu của tam thức bậc 2.


Đề bài

Chứng minh định lý về dấu của tam thức bậc 2.

Hướng dẫn: Với các trường hợp Δ < 0 và Δ = 0, sử dụng hệ thức đã biết:

 \(f(x) = a{\rm{[(x}}\,{\rm{ + }}{b \over {2a}}{)^2} - {\Delta  \over {4{a^2}}}{\rm{]}}\)

Hay \(af(x) = {a^2}[{(x + {b \over {2a}})^2} - {\Delta  \over {4{a^2}}}]\)

Trong trường hợp Δ > 0, sử dụng hệ thức đã biết:

f(x) = a(x – x1)(x – x2) hay af(x) = a2(x – x1)(x – x2)

trong đó, x1 và x2 là hai nghiệm của tam thức bậc hai f(x)

Lời giải chi tiết

Ta có: \(af(x) = {a^2}[{(x + {b \over {2a}})^2} - {\Delta  \over {4{a^2}}}]\)

+ Nếu Δ < 0  thì af(x) > 0 với mọi x ∈ R, tức f(x) cùng dấu với a với mọi x ∈ R

+ Nếu Δ = 0 thì \(af(x) = {a^2}{(x + {b \over {2a}})^{^2}}\) khi đó af(x) > 0 với mọi \(x \ne  - {b \over {2a}}\)

+ Nếu Δ > 0 thì f(x) có hai nghiệm phân biệt x1 và x2 và:

f(x) = a(x – x1)(x – x2)

Do đó: af(x) = a2(x – x1)(x – x2)

Vậy af(x) có cùng dấu với tích (x – x1)(x – x2).

Dấu của tích này được cho trong bảng sau (x1 < x2)

 

Do đó: af(x) < 0 với mọi x ∈ (x1, x2)

Và af(x) > 0 với mọi x < x1 hoặc x > x2

Bài giải tiếp theo