Bài 46 trang 100 SGK Đại số 10 nâng cao

Giải các hệ phương trình


Giải các hệ phương trình

LG a

\(\left\{ \matrix{
{x^2} + {y^2} + x + y = 8 \hfill \cr 
xy + x + y = 5 \hfill \cr} \right.\)

Giải chi tiết:

Đặt S = x + y; P = xy, ta có hệ:

\(\eqalign{
& \left\{ \matrix{
S + P = 5 \hfill \cr 
{S^2} - 2P + S = 8 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
P = 5 - S \hfill \cr 
{S^2} - 2(5 - S) + S = 8 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
P = 5 - S \hfill \cr 
{S^2} - 3S - 18 = 0 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
\left\{ \matrix{
S = 3 \hfill \cr 
P = 2 \hfill \cr} \right. \hfill \cr 
\left\{ \matrix{
S = - 6 \hfill \cr 
P = 11 \hfill \cr} \right. \hfill \cr} \right. \cr} \)

i) Với S = 3, P = 2 thì x, y là nghiệm của phương trình:

\({x^2} - 3x + 2 = 0 \Leftrightarrow \left[ \matrix{
x = 1 \hfill \cr 
x = 2 \hfill \cr} \right.\)

Ta có nghiệm (1, 2); (2, 1)

ii) Với S = -6, P = 11 thì hệ phương trình vô nghiệm vì:

S2 – 4P = 36 – 44 = -8 < 0

Vậy phương trình có hai nghiệm (1, 2); (2, 1)


LG b

\(\left\{ \matrix{
{x^2} + {y^2} - x + y = 2 \hfill \cr 
xy + x - y = - 1 \hfill \cr} \right.\)

Giải chi tiết:

Đặt x’ = -x, ta có hệ:

\(\left\{ \matrix{
x{'^2} + {y^2} + x' + y = 2 \hfill \cr 
- x'y - x' - y = - 1 \hfill \cr} \right.\)

Đặt S = x’ + y;  P = x’y, ta có:

\(\eqalign{
& \left\{ \matrix{
{S^2} - 2P + S = 2 \hfill \cr 
S + P = 1 \hfill \cr} \right. \cr&\Leftrightarrow \left\{ \matrix{
{S^2} + S - 2(1 - S) = 2 \hfill \cr 
P = 1 - S \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
{S^2} + 3S - 4 = 0 \hfill \cr 
P = 1 - S \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
\left\{ \matrix{
S = 1 \hfill \cr 
P = 0 \hfill \cr} \right. \hfill \cr 
\left\{ \matrix{
S = - 4 \hfill \cr 
P = 5 \hfill \cr} \right. \hfill \cr} \right. \cr} \) 

+) Nếu S =1, P = 0 thì x’, y là nghiệm phương trình:

\({X^2} - X = 0 \Leftrightarrow \left[ \matrix{
X = 0 \hfill \cr 
X = 1 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
\left\{ \matrix{
x' = 0 \hfill \cr 
y = 1 \hfill \cr} \right. \hfill \cr 
\left\{ \matrix{
x' = 1 \hfill \cr 
y = 0 \hfill \cr} \right. \hfill \cr} \right.\) 

Ta có nghiệm (0, 1) và (-1, 0)

+) Với S = -4, P = 5 thì hệ phương trình vô nghiệm vì S2 – 4P < 0


LG c

\(\left\{ \matrix{
{x^2} - 3x = 2y \hfill \cr 
{y^2} - 3y = 2x \hfill \cr} \right.\)

Giải chi tiết:

Trừ từng vế của hai phương trình ta được:

x2 – y2 – 3x + 3y = 2y – 2x

⇔ (x – y)(x + y) – (x – y) = 0

⇔ (x – y)(x + y – 1) = 0

⇔ x – y = 0 hoặc x + y – 1 = 0

Vậy hệ đã cho tương ứng với:

\(\left[ \matrix{
\left\{ \matrix{
{x^2} - 3x = 2y \hfill \cr 
x - y = 0 \hfill \cr} \right.\,\,\,\,\,\,\,\,\,\,(I) \hfill \cr 
\left\{ \matrix{
{x^2} - 3x = 2y \hfill \cr 
x + y - 1 = 0 \hfill \cr} \right.\,\,\,\,\,\,\,\,\,\,(II) \hfill \cr} \right.\)

Ta có:

\((I)\, \Leftrightarrow \left\{ \matrix{
{x^2} - 3x = 2y \hfill \cr 
x - y = 0 \hfill \cr} \right. \)

\(\Leftrightarrow \left\{ \matrix{
x(x - 5) = 0 \hfill \cr 
x = y \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = y = 0 \hfill \cr 
x = y = 5 \hfill \cr} \right.\)

\((II) \Leftrightarrow \left\{ \matrix{
{x^2} - 3x = 2(1 - x) \hfill \cr 
y = 1 - x \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
{x^2} - x - 2 = 0 \hfill \cr 
y = 1 - x \hfill \cr} \right.\)

\(\Leftrightarrow \left[ \matrix{
\left\{ \matrix{
x = - 1 \hfill \cr 
y = 2 \hfill \cr} \right. \hfill \cr 
\left\{ \matrix{
x = 2 \hfill \cr 
y = - 1 \hfill \cr} \right. \hfill \cr} \right.\)

Vậy hệ phương trình đã cho có bốn nghiệm là : \((0, 0); (5, 5); (-1, 2); (2, -1)\)