Bài 3 trang 139 Tài liệu dạy – học Toán 9 tập 2

Giải bài tập Cho hệ phương trình


Đề bài

Cho hệ phương trình \(\left\{ \begin{array}{l}2x + 3y = m\\25x - 3y = 3\end{array} \right.\)

Tìm giá trị của m để hệ phương trình có nghiệm x > 0, y < 0.

Phương pháp giải - Xem chi tiết

Giải hệ phương trình bằng phương pháp cộng đại số.

Lời giải chi tiết

\(\begin{array}{l}\left\{ \begin{array}{l}2x + 3y = m\\25x - 3y = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}27x = m + 3\\2x + 3y = m\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{{m + 3}}{{27}}\\2.\dfrac{{m + 3}}{{27}} + 3y = m\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{{m + 3}}{{27}}\\3y = m - \dfrac{{2m + 6}}{{27}}\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{{m + 3}}{{27}}\\3y = \dfrac{{25m - 6}}{{27}}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{{m + 3}}{{27}}\\y = \dfrac{{25m - 6}}{{81}}\end{array} \right.\end{array}\)

Do \(x > 0;\,\,y < 0 \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{m + 3}}{{27}} > 0\\\dfrac{{25m - 6}}{{81}} < 0\end{array} \right. \)

\(\Leftrightarrow \left\{ \begin{array}{l}m + 3 > 0\\25m - 6 < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m >  - 3\\m < \dfrac{6}{{25}}\end{array} \right.\)

\(\Leftrightarrow  - 3 < m < \dfrac{6}{{25}}\).

Vậy \( - 3 < m < \dfrac{6}{{25}}\).

 



Bài giải liên quan

Từ khóa phổ biến