Bài 20 trang 118 SGK Toán 9 tập 2
Giải bài 20 trang 118 SGK Toán 9 tập 2. Hãy điền đủ vào các ô trống ở bảng sau (xem hình 96)
Đề bài
Hãy điền đủ vào các ô trống ở bảng sau (xem hình 96)
Phương pháp giải - Xem chi tiết
Cho hình nón có chiều cao \(h,\) bán kính đáy \(r\) và đường sinh \(l.\) Khi đó:
+) Đường kính đáy: \(d=2r.\)
+) Thể tích hình nón: \(V=\dfrac{1}{3} \pi r^2h.\)
+) Mối quan hệ \(l^2=h^2+r^2.\)
Lời giải chi tiết
+ Dòng thứ nhất:
\(d = 2r = 1.10 = 20(cm)\)
\(l\) = \(\sqrt{h^2 + r^2 }= \sqrt{10^2 + 10^2}= 10\sqrt{2}\) (cm)
\(V\) = \(\dfrac{1}{3}\pi r^2h = \dfrac{1}{3}. 10^2. 10. \pi= 10^3. \pi.\dfrac{1}3\) (\(cm^3\))
+ Dòng thứ hai: \(r\)= \(\dfrac{d}{2}= 5 (cm)\)
\(l\) = \(\sqrt{h^2 + r^2}= \sqrt{10^2 + 5^2}= 5\sqrt{5}\) (cm)
\(V\) = \(\frac{1}{3}\pi r^2h = \dfrac{1}{3}. 5^2. 10. \pi= 250. \pi.\dfrac{1}3\) (cm3)
+ Dòng thứ ba: Khi \(h = 10cm;V = 1000\,c{m^3}\)
Ta có \(V = \dfrac{1}{3}\pi {r^2}h \Leftrightarrow {r^2} = \dfrac{{3V}}{{\pi h}} = \dfrac{{3.1000}}{{\pi .10}} = \dfrac{{300}}{\pi }\, \Rightarrow r = 10\sqrt {\dfrac{3}{\pi }} \,cm\)
- Đường kính đáy \(d = 2r = 20\sqrt {\dfrac{3}{\pi }} \,cm\)
- Đường sinh \(l = \sqrt {{h^2} + {r^2}} = \sqrt {100 + \dfrac{{300}}{\pi }} = 10\sqrt {\dfrac{3}{\pi } + 1} \)
+ Dòng thứ tư : Khi \(r = 10cm;V = 1000\,c{m^3}\)
Ta có \(V = \dfrac{1}{3}\pi {r^2}h \Leftrightarrow h = \dfrac{{3V}}{{\pi {r^2}}} = \dfrac{{3.1000}}{{\pi {{.10}^2}}} = \dfrac{{30}}{\pi }cm\)
- Đường kính đáy \(d = 2r = 20cm\)
- Đường sinh \(l = \sqrt {{h^2} + {r^2}} = \sqrt {\dfrac{{900}}{\pi } + 100} = 10\sqrt {\dfrac{9}{{{\pi ^2}}} + 1} \)
+ Dòng thứ 5: Khi \(d = 10cm;V = 1000c{m^3}\) ta có \(r = \dfrac{d}{2} = 5cm\)
- Lại có \(V = \dfrac{1}{3}\pi {r^2}h \Leftrightarrow h = \dfrac{{3V}}{{\pi {r^2}}} = \dfrac{{3.1000}}{{\pi {{.5}^2}}} = \dfrac{{120}}{\pi }cm\)
- Đường sinh \(l = \sqrt {{r^2} + {h^2}} = \sqrt {{5^2} + {{\left( {\dfrac{{120}}{\pi }} \right)}^2}} \)
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 20 trang 118 SGK Toán 9 tập 2 timdapan.com"