Bài 12 trang 52 Vở bài tập toán 9 tập 2

Giải Bài 12 trang 52 VBT toán 9 tập 2. Không giải phương trình hãy xác định các hệ số a, b, c, tính biểu thức Δ ...


Không giải phương trình, hãy xác định các hệ số a, b, c, tính biểu thức \(\Delta \) và xác định số nghiệm của mỗi phương trình sau:

LG a

\(7{x^2} - 2x + 3 = 0\)

Phương pháp giải:

Xác định hệ số \(a;b;c\) rồi tính \(\Delta  = {b^2} - 4ac\). So sánh \(\Delta \) với \(0.\)

TH1. Nếu \(\Delta  < 0\) thì phương trình vô nghiệm.

TH2. Nếu  \(\Delta  = 0\) thì phương trình có nghiệm kép

TH3. Nếu \(\Delta  > 0\) thì phương trình có hai nghiệm phân biệt

Lời giải chi tiết:

\(a = 7;b =  - 2;c = 3\)

\(\Delta  = {b^2} - 4ac = {\left( { - 2} \right)^2} - 4.7.3 \)\(=  - 80 < 0\)

Phương trình \(7{x^2} - 2x + 3 = 0\) vô nghiệm.


LG b

\(5{x^2} + 2\sqrt {10} x + 2 = 0\)

Phương pháp giải:

Xác định hệ số \(a;b;c\) rồi tính \(\Delta  = {b^2} - 4ac\). So sánh \(\Delta \) với \(0.\)

TH1. Nếu \(\Delta  < 0\) thì phương trình vô nghiệm.

TH2. Nếu  \(\Delta  = 0\) thì phương trình có nghiệm kép

TH3. Nếu \(\Delta  > 0\) thì phương trình có hai nghiệm phân biệt

Lời giải chi tiết:

\(a = 5;b = 2\sqrt {10} ;c = 2\)

\(\Delta  = {b^2} - 4ac = {\left( {2\sqrt {10} } \right)^2} - 4.5.2 \)\(= 40 - 40 = 0\)

Phương trình \(5{x^2} + 2\sqrt {10} x + 2 = 0\) có nghiệm kép.


LG c

\(\dfrac{1}{2}{x^2} + 7x + \dfrac{2}{3} = 0\)  

Phương pháp giải:

Xác định hệ số \(a;b;c\) rồi tính \(\Delta  = {b^2} - 4ac\). So sánh \(\Delta \) với \(0.\)

TH1. Nếu \(\Delta  < 0\) thì phương trình vô nghiệm.

TH2. Nếu  \(\Delta  = 0\) thì phương trình có nghiệm kép

TH3. Nếu \(\Delta  > 0\) thì phương trình có hai nghiệm phân biệt

Lời giải chi tiết:

\(a = \dfrac{1}{2};b = 7;c = \dfrac{2}{3}\)

\(\Delta  = {b^2} - 4ac \)\(= {7^2} - 4.\dfrac{1}{2}.\dfrac{2}{3} \)\(= \dfrac{{143}}{3} > 0\)

Phương trình \(\dfrac{1}{2}{x^2} + 7x + \dfrac{2}{3} = 0\) có hai nghiệm phân biệt.


LG d

\(1,7{x^2} - 1,2x - 2,1 = 0\)

Phương pháp giải:

Xác định hệ số \(a;b;c\) rồi tính \(\Delta  = {b^2} - 4ac\). So sánh \(\Delta \) với \(0.\)

TH1. Nếu \(\Delta  < 0\) thì phương trình vô nghiệm.

TH2. Nếu  \(\Delta  = 0\) thì phương trình có nghiệm kép

TH3. Nếu \(\Delta  > 0\) thì phương trình có hai nghiệm phân biệt

Lời giải chi tiết:

\(a = 1,7;b =  - 1,2;c =  - 2,1\)

\(\Delta  = {b^2} - 4ac \)\(= {\left( { - 1,2} \right)^2} - 4.1,7.\left( { - 2,1} \right) \)\(= 15,72 > 0\)

Phương trình \(1,7{x^2} - 1,2x - 2,1 = 0\) có hai nghiệm phân biệt.