Bài 10 trang 9 SGK Đại số và Giải tích 12 Nâng cao
Tính tốc độ tăng dân số vào năm 1990 và năm 2008 của thị trấn. Vào năm nào thì tốc độ gia tăng dân số là 0,125 nghìn người/năm?
Số dân của một thị trấn sau \(t\) năm kể từ năm \(1970\) được ước tính bởi công thức: \(f\left( t \right) = {{26t + 10} \over {t + 5}},f\left( t \right)\) được tính bằng nghìn người).
LG a
Tính số dân của thị trấn vào năm \(1980\) và năm \(1995\).
Giải chi tiết:
Vào năm \(1980\) thì \(t = 10\), số dân của thị trấn năm \(1980\) là:
\(f\left( {10} \right) = {{260 + 10} \over {10 + 5}} = 18\) nghìn người
Vào năm \(1995\) thì \(t=25\) , số dân của thị trấn năm \(1995\) là:
\(f\left( {25} \right) = {{26.25 + 10} \over {25 + 5}} = 22\) nghìn người.
LG b
Xem \(f\) là một hàm số xác định trên nửa khoảng \(\left[ {0; + \infty } \right)\,\). Tính \(f'\) và xét chiều biến thiên của hàm số \(f\) trên nửa khoảng \(\left[ {0; + \infty } \right)\,\)
Giải chi tiết:
Ta có: \(f'\left( t \right) = {{120} \over {{{\left( {t + 5} \right)}^2}}} > 0\) với mọi \(t>0\)
Hàm số đồng biến trên \(\left[ {0; + \infty } \right)\).
LG c
Đạo hàm của hàm số \(f\) biểu thị tốc độ tăng dân số của thị trấn ( tính bằng nghìn người/năm).
• Tính tốc độ tăng dân số vào năm \(1990\) và năm \(2008\) của thị trấn.
• Vào năm nào thì tốc độ gia tăng dân số là \(0,125\) nghìn người/năm?
Giải chi tiết:
Tốc độ tăng dân số vào năm \(1990\) là \(f'\left( {20} \right) = {{120} \over {{{25}^2}}} = 0,192\)
Tốc độ tăng dân số vào năm \(2008\) là \(f'\left( {38} \right) = {{120} \over {{{43}^2}}} \approx 0,065\)
\({{120} \over {{{\left( {t + 5} \right)}^2}}} = 0,125 \Leftrightarrow t + 5 = \sqrt {{{120} \over {0,125}}} \approx 31 \Rightarrow t \approx 26\)
Vào năm \(1996\) tốc độ tăng dân số của thị trấn là \(0,125\).
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 10 trang 9 SGK Đại số và Giải tích 12 Nâng cao timdapan.com"