Bài 1. Phương pháp quy nạp toán học Chuyên đề học tập Toán 10 chân trời sáng tạo



Giải mục 2 trang 30, 31 Chuyên đề học tập Toán 10 - Chân trời sáng tạo

Chứng minh rằng ({n^3} + 2n) chia hết cho 3 với mọi (n in mathbb{N}*)

Giải bài 1 trang 32 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Chứng minh các đẳng thức sau đúng với mọi \(n \in \mathbb{N}*\):


Giải bài 3 trang 32 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Chứng minh rằng nếu \(x > - 1\) thì \({(1 + x)^n} \ge 1 + nx\) với mọi \(n \in \mathbb{N}*\)

Giải bài 4 trang 32 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Cho \(a,b \ge 0\). Chứng minh rằng bất đẳng thức sau đúng với mọi \(n \in \mathbb{N}*\)

Giải bài 5 trang 32 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Chứng minh rằng bất đẳng thức sau đúng với mọi số tự nhiên \(n \ge 2\).

Giải bài 6 trang 32 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Trong mặt phẳng, cho đa giác\({A_1}{A_2}{A_3}...{A_n}\) có n cạnh \((n \ge 3)\). Gọi \({S_n}\) là tổng số đo các góc trong của đa giác.

Giải bài 7 trang 32 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Hàng tháng, một người gửi vào ngân hàng một khoản tiền tiết kiệm không đổi a đồng

Bài học bổ sung