Bài 1. Định lí Thalès trong tam giác - SBT Toán 8 CD
Giải bài 1 trang 59 sách bài tập toán 8 – Cánh diều
Cho các đoạn thẳng \(AB = 6cm,CD = 4cm,PQ = 8cm,EF = 10cm,MN = 25cm,RS = 15cm\)
Tìm phát biểu đúng trong các phát biểu sau:
Giải bài 2 trang 59 sách bài tập toán 8 – Cánh diều
Cho các đoạn thẳng \(EF = 6cm,GH = 3cm,IK = 5cm,MN = xcm\). Tìm \(x\) để hai đoạn thẳng \(EF\) và \(GH\) tỉ lệ với hai đoạn thẳng \(IK\) và \(MN\).
Giải bài 3 trang 59 sách bài tập toán 8 – Cánh diều
Cho tam giác \(ABC\). Một đường thẳng \(d\) song song với \(BC\) và cắt các cạnh \(AB,AC\) của tam giác đó lần lượt tại \(M,N\) với \(\frac{{AM}}{{AB}} = \frac{1}{3}\) và \(AN + AC = 16\) cm. Tính \(AN\).
Giải bài 4 trang 60 sách bài tập toán 8 – Cánh diều
Tòa nhà Bitexco Financial (hay thóa tài chính Bitexco) được xây dựng tại trung tâm Quận 1, Thành phố Hồ Chí Minh. Tòa nhà có 68 tầng (không kể các tầng hầm).
Giải bài 5 trang 60 sách bài tập toán 8 – Cánh diều
Cho tam giác \(ABC\) vuông ở \(A\). Vẽ ra phía ngoài tam giác đó các tam giác \(BAD\) vuông cân ở \(B\), \(ACF\) vuông cân ở \(C\).
Giải bài 6 trang 60 sách bài tập toán 8 – Cánh diều
Trong Hình 10, cho biết \(ABCD\) là hình thang, \(AB//CD\left( {AB < CD} \right)\); \(M\) là trung điểm của \(DC\); \(AM\) cắt \(BD\) ở \(I\); \(BM\) cắt \(AC\) ở \(K\); \(IK\) cắt \(AD,BC\) lần lượt ở \(E,F\). Chứng minh:
Giải bài 7 trang 60 sách bài tập toán 8 – Cánh diều
Cho \(ABCD\) là hình bình hành. Một đường thẳng \(d\) đi qua \(A\) cắt \(BD,BC,DC\) lần lượt tại \(E,K,G\) (Hình 11). Chứng minh:
Giải bài 8 trang 60 sách bài tập toán 8 – Cánh diều
An có một mảnh bìa có dạng hình tam giác \(ABC\) nhưng bị rách. An muốn cắt bỏ phần bị rách với vết cắt là đoạn thẳng \(MN\).
Giải bài 9 trang 60 sách bài tập toán 8 – Cánh diều
Cho tam giác \(ABC\) có ba góc nhọn, đường cao \(AH\). Trên \(AH,AB,AC\) lần lượt lấy các điểm \(D,E,F\) sao cho \(\widehat {EDC} = \widehat {FDB} = 90^\circ \). Chứng minh: \(EF//BC\).