Phần câu hỏi bài 5 trang 125 Vở bài tập toán 8 tập 2

Giải phần câu hỏi bài 5 trang 125 VBT toán 8 tập 2. Hình lăng trụ đứng tam giác ABC.A'B'C' có độ dài đường cao ...


Hình lăng trụ đứng tam giác \(ABC.A'B'C'\) có độ dài đường cao \(AA' = 8,5cm\). Đáy \(ABC\) là tam giác vuông tại đỉnh \(A\), có độ dài các cạnh \(AB = 7,5cm;AC = 5,4cm\) (h.79).

 

Khoanh tròn vào chữ cái đứng trước khẳng định đúng. 

LG a

Chu vi đáy (lấy đến hai chữ số thập phân) là:

A. \(22,14\)                        B. \(22,15\)

C. \(22,41\)                        D. \(22,51\)

Phương pháp giải:

Chu vi tam giác bằng tổng các cạnh.

Giải chi tiết:

 Tam giác \(ABC\) vuông tại \(A\) nên theo định lí Pi – ta – go ta có:

\(B{C^2} = A{B^2} + A{C^2}\) \( = 7,{5^2} + 5,{4^2} = 85,41\) \( \Rightarrow BC \approx 9,24\)

Chu vi đáy: \(AB + AC + BC\) \( \approx 7,5 + 5,4 + 9,24 = 22,14\)

Chọn A. 


LG b

Diện tích xung quanh của lăng trụ đứng (lấy đến hai chữ số thập phân) là:

A. \(188,20\)                      B. \(188,26\)

C. \(66,74\)                        D. \(53,60\) 

Phương pháp giải:

Diện tích xung quanh \({S_{xq}} = {C_{day}}.h\) 

Giải chi tiết:

Diện tích xung quanh là:

\({S_{xq}} = {C_{day}}.AA' = 22,14.8,5 \approx 188,20\)

Chọn A. 


LG c

Diện tích toàn phần của lăng trụ đứng (lấy đến hai chữ số thập phân) là:

A. \(228,71\)                          B. \(228,75\)

C. \(228,70\)                          D. \(229\)

Phương pháp giải:

Diện tích toàn phần \({S_{tp}} = {S_{xq}} + 2{S_d}\). 

Giải chi tiết:

Diện tích đáy là:

\({S_{ABC}} = \dfrac{1}{2}AB.AC\) \( = \dfrac{1}{2}.7,5.5,4 = 20,25\)

Diện tích toàn phần \({S_{tp}} = {S_{sq}} + 2{S_{ABC}}\) \( = 188,20 + 2.20,25 = 228,70\)

Chọn C.