Giải bài tập 9.18 trang 83 SGK Toán 9 tập 2 - Kết nối tri thức

Cho ABCD là tứ giác nội tiếp. Tính số đo của các góc còn lại của tứ giác trong mỗi trường hợp sau: a) \(\widehat A = {60^o},\widehat B = {80^o}\); b) \(\widehat B = {70^o},\widehat C = {90^o}\); c) \(\widehat C = {100^o},\widehat D = {60^o}\); d) \(\widehat D = {110^o},\widehat A = {80^o}\).


Đề bài

Cho ABCD là tứ giác nội tiếp. Tính số đo của các góc còn lại của tứ giác trong mỗi trường hợp sau:

a) \(\widehat A = {60^o},\widehat B = {80^o}\);

b) \(\widehat B = {70^o},\widehat C = {90^o}\);

c) \(\widehat C = {100^o},\widehat D = {60^o}\);

d) \(\widehat D = {110^o},\widehat A = {80^o}\).

Phương pháp giải - Xem chi tiết

Vì ABCD là tứ giác nội tiếp nên \(\widehat A + \widehat C = {180^o},\widehat B + \widehat D = {180^o}\), từ đó tính các góc còn lại của tứ giác.

Lời giải chi tiết

Vì ABCD là tứ giác nội tiếp nên \(\widehat A + \widehat C = {180^o},\widehat B + \widehat D = {180^o}\)

a) Ta có:

\(\widehat C = {180^o} - \widehat A = {180^o} - {60^o} = {120^o};\\\widehat D = {180^o} - \widehat B = {180^o} - {80^o} = {100^o}\)

b) Ta có:

\(\widehat A = {180^o} - \widehat C = {180^o} - {90^o} = {90^o};\\\widehat D = {180^o} - \widehat B = {180^o} - {70^o} = {110^o}\)

c) Ta có:

\(\widehat A = {180^o} - \widehat C = {180^o} - {100^o} = {80^o};\\\widehat B = {180^o} - \widehat D = {180^o} - {60^o} = {120^o}\)

d) Ta có:

\(\widehat B = {180^o} - \widehat D = {180^o} - {110^o} = {70^o};\\\widehat C = {180^o} - \widehat A = {180^o} - {80^o} = {100^o}\)



Bài học liên quan

Từ khóa phổ biến