Giải bài tập 3.6 trang 48 SGK Toán 9 tập 1 - Kết nối tri thức
Không dùng MTCT, chứng tỏ biểu thức A có giá trị là số nguyên: (A = sqrt {{{left( {1 + 2sqrt 2 } right)}^2}} - sqrt {{{left( {1 - 2sqrt 2 } right)}^2}} .)
Đề bài
Không dùng MTCT, chứng tỏ biểu thức A có giá trị là số nguyên:
\(A = \sqrt {{{\left( {1 + 2\sqrt 2 } \right)}^2}} - \sqrt {{{\left( {1 - 2\sqrt 2 } \right)}^2}} .\)
Phương pháp giải - Xem chi tiết
Chú ý: \(\sqrt {{A^2}} = \left| A \right|\)và quy tắc dấu ngoặc (có dấu trừ trước ngoặc thì phá ngoặc đổi dấu các hạng tử trong ngoặc)
Lời giải chi tiết
\(\begin{array}{l}A = \sqrt {{{\left( {1 + 2\sqrt 2 } \right)}^2}} - \sqrt {{{\left( {1 - 2\sqrt 2 } \right)}^2}} \\ = \left| {1 + 2\sqrt 2 } \right| - \left| {1 - 2\sqrt 2 } \right|\\ = 1 + 2\sqrt 2 - \left( {2\sqrt 2 - 1} \right)\\ = 1 + 2\sqrt 2 - 2\sqrt 2 + 1\\ = 2\end{array}\)
Mẹo Tìm đáp án nhanh nhất
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài tập 3.6 trang 48 SGK Toán 9 tập 1 - Kết nối tri thức timdapan.com"
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài tập 3.6 trang 48 SGK Toán 9 tập 1 - Kết nối tri thức timdapan.com"