Giải bài tập 3.28 trang 64 SGK Toán 9 tập 1 - Kết nối tri thức
Rút gọn các biểu thức sau: a) (frac{{5 + 3sqrt 5 }}{{sqrt 5 }} - frac{1}{{sqrt 5 - 2}};) b) (sqrt {{{left( {sqrt 7 - 2} right)}^2}} - sqrt {63} + frac{{sqrt {56} }}{{sqrt 2 }};) c) (frac{{sqrt {{{left( {sqrt 3 + sqrt 2 } right)}^2}} + sqrt {{{left( {sqrt 3 - sqrt 2 } right)}^2}} }}{{2sqrt {12} }};) d) (frac{{sqrt[3]{{{{left( {sqrt 2 + 1} right)}^3}}} - 1}}{{sqrt {50} }}.)
Đề bài
Rút gọn các biểu thức sau:
a) \(\frac{{5 + 3\sqrt 5 }}{{\sqrt 5 }} - \frac{1}{{\sqrt 5 - 2}};\)
b) \(\sqrt {{{\left( {\sqrt 7 - 2} \right)}^2}} - \sqrt {63} + \frac{{\sqrt {56} }}{{\sqrt 2 }};\)
c) \(\frac{{\sqrt {{{\left( {\sqrt 3 + \sqrt 2 } \right)}^2}} + \sqrt {{{\left( {\sqrt 3 - \sqrt 2 } \right)}^2}} }}{{2\sqrt {12} }};\)
d) \(\frac{{\sqrt[3]{{{{\left( {\sqrt 2 + 1} \right)}^3}}} - 1}}{{\sqrt {50} }}.\)
Phương pháp giải - Xem chi tiết
Sử dụng kết hợp các phương pháp trục căn thức, khai căn bặc hai, bậc ba, đưa thừa số ra ngoài dấu căn, rồi thu gọn biểu thức.
Lời giải chi tiết
a) \(\frac{{5 + 3\sqrt 5 }}{{\sqrt 5 }} - \frac{1}{{\sqrt 5 - 2}}\)
\(\begin{array}{l} = \frac{{\left( {5 + 3\sqrt 5 } \right).\sqrt 5 }}{{\sqrt 5 .\sqrt 5 }} - \frac{{\sqrt 5 + 2}}{{\left( {\sqrt 5 - 2} \right)\left( {\sqrt 5 + 2} \right)}}\\ = \frac{{5\sqrt 5 + 15}}{5} - \frac{{\sqrt 5 + 2}}{{5 - 4}}\end{array}\)
\(\begin{array}{l} = \sqrt 5 + 3 - \left( {\sqrt 5 + 2} \right)\\ = 1\end{array}\)
b) \(\sqrt {{{\left( {\sqrt 7 - 2} \right)}^2}} - \sqrt {63} + \frac{{\sqrt {56} }}{{\sqrt 2 }}\)
\(\begin{array}{l} = \left| {\sqrt 7 - 2} \right| - \sqrt {9.7} + \frac{{\sqrt {2.28} }}{{\sqrt 2 }}\\ = \sqrt 7 - 2 - 3\sqrt 7 + \sqrt {28} \\ = - 2 - 2\sqrt 7 + \sqrt {4.7} \end{array}\)
\(\begin{array}{l} = - 2 - 2\sqrt 7 + 2\sqrt 7 \\ = - 2\end{array}\)
c) \(\frac{{\sqrt {{{\left( {\sqrt 3 + \sqrt 2 } \right)}^2}} + \sqrt {{{\left( {\sqrt 3 - \sqrt 2 } \right)}^2}} }}{{2\sqrt {12} }}\)
\(\begin{array}{l} = \frac{{\left| {\sqrt 3 + \sqrt 2 } \right| + \left| {\sqrt 3 - \sqrt 2 } \right|}}{{2\sqrt {4.3} }}\\ = \frac{{\sqrt 3 + \sqrt 2 + \sqrt 3 - \sqrt 2 }}{{4\sqrt 3 }}\\ = \frac{{2\sqrt 3 }}{{4\sqrt 3 }}\\ = \frac{1}{2}\end{array}\)
d) \(\frac{{\sqrt[3]{{{{\left( {\sqrt 2 + 1} \right)}^3}}} - 1}}{{\sqrt {50} }}\)
\(\begin{array}{l} = \frac{{\sqrt 2 + 1 - 1}}{{\sqrt {25.2} }}\\ = \frac{{\sqrt 2 }}{{5\sqrt 2 }}\\ = \frac{1}{5}\end{array}\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài tập 3.28 trang 64 SGK Toán 9 tập 1 - Kết nối tri thức timdapan.com"