Giải bài tập 3.15 trang 53 SGK Toán 9 tập 1 - Kết nối tri thức

Cho căn thức (sqrt {{x^2} - 4x + 4} .) a) Hãy chứng tỏ rằng căn thức xác định với mọi giá trị của x. b) Rút gọn căn thức đã cho với (x ge 2.) c) Chứng tỏ rằng với mọi (x ge 2,) biểu thức (sqrt {x - sqrt {{x^2} - 4x + 4} } ) có giá trị không đổi.


Đề bài

Cho căn thức \(\sqrt {{x^2} - 4x + 4} .\)

a) Hãy chứng tỏ rằng căn thức xác định với mọi giá trị của x.

b) Rút gọn căn thức đã cho với \(x \ge 2.\)

c) Chứng tỏ rằng với mọi \(x \ge 2,\) biểu thức \(\sqrt {x - \sqrt {{x^2} - 4x + 4} } \) có giá trị không đổi.

Phương pháp giải - Xem chi tiết

Điều kiện xác định của căn thức \(\sqrt A \) là \(A \ge 0.\)

\(\left| A \right| = A\) khi \(A \ge 0;\) \(\left| A \right| =  - A\) khi \(A < 0\)

Đối với ý c, để biểu thức có giá trị không đổi tức kết quả sau khi rút gọn sẽ không còn biến.

Lời giải chi tiết

a) Ta có: \(\sqrt {{x^2} - 4x + 4}  = \sqrt {{{\left( {x - 2} \right)}^2}} \).

Do \({\left( {x - 2} \right)^2} \ge 0\) với mọi x nên căn thức đã cho xác định với mọi giá trị của x.

b) Với \(x \ge 2\) ta có:

\(\sqrt {{x^2} - 4x + 4}  = \sqrt {{{\left( {x - 2} \right)}^2}}  = \left| {x - 2} \right| = x - 2\)

c) Ta có:

\(\sqrt {x - \sqrt {{x^2} - 4x + 4} }  = \sqrt {x - \left| {x - 2} \right|}  = \sqrt {x - \left( {x - 2} \right)}  = \sqrt 2 \) là hằng số

Do đó với mọi \(x \ge 2,\) biểu thức \(\sqrt {x - \sqrt {{x^2} - 4x + 4} } \)có giá trị không đổi.



Bài học liên quan

Từ khóa phổ biến