Bài 8 trang 25 SBT toán 8 tập 1

Giải bài 8 trang 25 sách bài tập toán 8. Cho hai phân thức A/B và C/D ...


Đề bài

Cho hai phân thức \(\displaystyle {A \over B}\) và \(\displaystyle {C \over D}\).

Chứng minh rằng có vô số cặp phân thức cùng mẫu, có dạng \(\displaystyle {{A'} \over E}\) và \(\displaystyle{{C'} \over E}\) thỏa mãn điều kiện \(\displaystyle{{A'} \over E} = {A \over B}\) và \(\displaystyle{{C'} \over E} = {C \over D}\). 

Phương pháp giải - Xem chi tiết

Nếu nhân cả tử và mẫu của một phân thức với cùng một đa thức khác đa thức không thì được một phân thức bằng phân thức đã cho.

\( \dfrac{A}{B}= \dfrac{A.M}{B.M}\) ( \(M\) là một đa thức khác đa thức \(0\))

Lời giải chi tiết

Với hai phân thức \(\displaystyle {A \over B}\) và \(\displaystyle {C \over D}\) ta có được hai phân thức cùng mẫu \(\displaystyle {{A.D} \over {B.D}}\) và \(\displaystyle {{C.B} \over {B.D}}\).

Ta nhân tử và mẫu của hai phân thức đó với cùng một đa thức \(M ≠ 0\) bất kỳ, ta có hai phân thức mới cùng mẫu \(\displaystyle {{A.D.M} \over {B.D.M}}\) và \(\displaystyle {{C.B.M} \over {B.D.M}}\).

Ta đặt \(B.D.M = E; A.D.M = A’;\)\(\, C.B.M = C’\)

\( \displaystyle \Rightarrow {{A'} \over E} = {A \over {B}};\;{{C'} \over E} = {C \over D}\).

Vì có vô số đa thức \(M ≠ 0\) nên ta có vô số phân thức cùng mẫu bằng hai phân thức đã cho.



Từ khóa phổ biến