Giải bài 7.11 trang 41 SGK Toán 10 – Kết nối tri thức
Chứng minh rằng hai đường thẳng d: y = ax + b
Đề bài
Chứng minh rằng hai đường thẳng d: y = ax + b (\(a{\rm{ }} \ne {\rm{ }}0\) ) và d': y=a'x + b' (\(a'{\rm{ }} \ne {\rm{ }}0\)) vuông góc với nhau khi và chỉ khi aa' = -1.
Phương pháp giải - Xem chi tiết
Chuyển mỗi phương trình của \(d,d'\) về dạng tổng quát từ đó tìm được hai vecto pháp tuyến tương ứng của mỗi đường thẳng, sau đó sử dụng điều kiện \(\overrightarrow {{n_d}} .\overrightarrow {{n_{d'}}} = 0\).
Lời giải chi tiết
Phương trình tổng quát của đường thẳng \(d,d'\) lần lượt là: \(ax - y + b = 0,{\rm{ }}a'x - y + b' = 0\).
Do đó \(\overrightarrow {{n_d}} = \left( {a; - 1} \right),{\rm{ }}\overrightarrow {{n_{d'}}} = \left( {a'; - 1} \right)\).
Ta có \(d \bot d' \Leftrightarrow \overrightarrow {{n_d}} \bot \overrightarrow {{n_{d'}}} \Leftrightarrow \overrightarrow {{n_d}} .\overrightarrow {{n_{d'}}} = 0 \Leftrightarrow a.a' + \left( { - 1} \right)\left( { - 1} \right) = 0 \Leftrightarrow a.a' = - 1\).
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài 7.11 trang 41 SGK Toán 10 – Kết nối tri thức timdapan.com"