Giải bài 7 trang 51 SGK Toán 8 – Cánh diều

Thời thơ ấy của Diofantos chiếm


Đề bài

Thời thơ ấy của Diofantos chiếm \(\frac{1}{6}\) cuộc đời

\(\frac{1}{{12}}\) cuộc đời tiếp theo là thời thanh niên sôi nổi

Thêm \(\frac{1}{7}\) cuộc đời nữa ông sống độc thân

Sau khi lập gia đình được 5 năm thì sinh một con trai

Nhưng só mệnh chỉ cho con sống bằng nửa đời cha

Ông đã từ trần 4 năm sau khi con mất

Diofantos sống bao nhiêu tuổi, hãy tính cho ra?

Phương pháp giải - Xem chi tiết

Dựa theo các bước giải bài toán bằng cách lập phương trình để giải bài toán đã cho.

Lời giải chi tiết

Gọi số tuổi của Diofantos là \(x\) (tuổi), điều kiện \(x \in {\mathbb{N}^*}\)

Số năm tuổi thơ của Diofantos là \(\frac{x}{6}\) (năm)

Số năm thanh niên của Diofantos là \(\frac{x}{{12}}\) (năm)

Số năm sống độc thân là \(\frac{x}{7}\) (năm)

Số tuổi của con trai là \(\frac{x}{2}\) (tuổi)

Theo giả thiết, ta có phương trình: \(\frac{x}{6} + \frac{x}{{12}} + \frac{x}{7} + 5 + \frac{x}{2} + 4 = x\)

Giải phương trình:

\(\begin{array}{l}\frac{x}{6} + \frac{x}{{12}} + \frac{x}{7} + 5 + \frac{x}{2} + 4 = x\\\frac{{25}}{{28}}x + 9 = x\\\frac{{25}}{{28}}x - x =  - 9\\\frac{{ - 3}}{{28}}x =  - 9\\x = \left( { - 9} \right):\left( {\frac{{ - 3}}{{28}}} \right)\\x = 84\end{array}\)

Giá trị \(x = 84\) thỏa mãn điều kiện của ẩn.

Vậy Diofantos sống 84 tuổi.



Bài học liên quan

Từ khóa phổ biến