Bài 5.61 trang 209 SBT đại số và giải tích 11
Giải bài 5.61 trang 209 sách bài tập đại số và giải tích 11. Tìm đạo hàm của hàm số sau:...
Đề bài
Tìm đạo hàm của hàm số sau:
\(y = \left( {1 - x} \right){\left( {1 - {x^2}} \right)^2}{\left( {1 - {x^3}} \right)^3}.\)
Lời giải chi tiết
\(\begin{array}{l}
y' = \left( {1 - x} \right)'{\left( {1 - {x^2}} \right)^2}{\left( {1 - {x^3}} \right)^3}\\
+ \left( {1 - x} \right)\left[ {{{\left( {1 - {x^2}} \right)}^2}} \right]'{\left( {1 - {x^3}} \right)^3}\\
+ \left( {1 - x} \right){\left( {1 - {x^2}} \right)^2}\left[ {{{\left( {1 - {x^3}} \right)}^3}} \right]'\\
= - 1.{\left( {1 - {x^2}} \right)^2}{\left( {1 - {x^3}} \right)^3}\\
+ \left( {1 - x} \right)\left[ {2\left( {1 - {x^2}} \right)\left( {1 - {x^2}} \right)'} \right]{\left( {1 - {x^3}} \right)^3}\\
+ \left( {1 - x} \right){\left( {1 - {x^2}} \right)^2}\left[ {{{3\left( {1 - {x^3}} \right)}^2}\left( {1 - {x^3}} \right)'} \right]\\
= - {\left( {1 - {x^2}} \right)^2}{\left( {1 - {x^3}} \right)^3}\\
+ \left( {1 - x} \right)\left[ {2\left( {1 - {x^2}} \right).\left( { - 2x} \right)} \right]{\left( {1 - {x^3}} \right)^3}\\
+ \left( {1 - x} \right){\left( {1 - {x^2}} \right)^2}\left[ 3{{{\left( {1 - {x^3}} \right)}^2}\left( { - 3{x^2}} \right)} \right]\\
= - {\left( {1 - {x^2}} \right)^2}{\left( {1 - {x^3}} \right)^3}\\
- 4x\left( {1 - x} \right)\left( {1 - {x^2}} \right){\left( {1 - {x^3}} \right)^3}\\
- 9{x^2}\left( {1 - x} \right){\left( {1 - {x^2}} \right)^2}{\left( {1 - {x^3}} \right)^2}
\end{array}\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 5.61 trang 209 SBT đại số và giải tích 11 timdapan.com"