Bài 5.48 trang 207 SBT đại số và giải tích 11
Giải bài 5.48 trang 207 sách bài tập đại số và giải tích 11. Giải phương trình...
Giải phương trình \(f'\left( x \right) = 0,\) biết rằng
LG a
\(f\left( x \right) = 3x + {{60} \over x} - {{64} \over {{x^3}}} + 5\)
Lời giải chi tiết:
\(\begin{array}{l}
f'\left( x \right) = 3 - \dfrac{{60}}{{{x^2}}} - \dfrac{{64.\left( { - 3{x^2}} \right)}}{{{x^6}}}\\
= 3 - \dfrac{{60}}{{{x^2}}} + \dfrac{{192}}{{{x^4}}}\\
= \dfrac{{3{x^4} - 60{x^2} + 192}}{{{x^4}}}\\
f'\left( x \right) = 0\\
\Leftrightarrow \dfrac{{3{x^4} - 60{x^2} + 192}}{{{x^4}}} = 0\\
\Leftrightarrow 3{x^4} - 60{x^2} + 192 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
{x^2} = 16\\
{x^2} = 4
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = \pm 4\\
x = \pm 2
\end{array} \right.
\end{array}\)
Vậy \(x\in\left\{ { \pm 2; \pm 4} \right\}.\)
LG b
\(\displaystyle f\left( x \right) = {{\sin 3x} \over 3} + \cos x\) \(\displaystyle - \sqrt 3 \left( {\sin x + {{\cos 3x} \over 3}} \right).\)
Lời giải chi tiết:
\(\begin{array}{l}
f'\left( x \right)\\
= \frac{{3\cos 3x}}{3} - \sin x - \sqrt 3 \left( {\cos x + \frac{{ - 3\sin 3x}}{3}} \right)\\
= \cos 3x - \sin x - \sqrt 3 \left( {\cos x - \sin 3x} \right)\\
= \cos 3x + \sqrt 3 \sin 3x - \sin x - \sqrt 3 \cos x\\
f'\left( x \right) = 0\\
\Leftrightarrow \cos 3x + \sqrt 3 \sin 3x - \sin x - \sqrt 3 \cos x = 0\\
\Leftrightarrow \cos 3x + \sqrt 3 \sin 3x = \sin x + \sqrt 3 \cos x\\
\Leftrightarrow \frac{1}{2}\cos 3x + \frac{{\sqrt 3 }}{2}\sin 3x = \frac{1}{2}\sin x + \frac{{\sqrt 3 }}{2}\cos x\\
\Leftrightarrow \cos \left( {3x - \frac{\pi }{3}} \right) = \cos \left( {x - \frac{\pi }{6}} \right)\\
\Leftrightarrow \left[ \begin{array}{l}
3x - \frac{\pi }{3} = x - \frac{\pi }{6} + k2\pi \\
3x - \frac{\pi }{3} = - x + \frac{\pi }{6} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
2x = \frac{\pi }{6} + k2\pi \\
4x = \frac{\pi }{2} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{{12}} + k\pi \\
x = \frac{\pi }{8} + \frac{{k\pi }}{2}
\end{array} \right.
\end{array}\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 5.48 trang 207 SBT đại số và giải tích 11 timdapan.com"