Giải bài 5 trang 80 sách bài tập toán 10 - Chân trời sáng tạo

Cho tam giác ABC có BC = a,CA = b,AB = c. Mệnh đề nào sau đây đúng?


Đề bài

Cho tam giác ABC có \(BC = a,CA = b,AB = c\). Mệnh đề nào sau đây đúng?

A. Nếu \({b^2} + {c^2} - {a^2} > 0\) thì góc A nhọn

B. Nếu \({b^2} + {c^2} - {a^2} > 0\) thì góc A tù

C. Nếu \({b^2} + {c^2} - {a^2} < 0\) thì góc A nhọn

D. Nếu \({b^2} + {c^2} - {a^2} < 0\) thì góc A vuông

Lời giải chi tiết

Áp dụng định lí côsin ta có: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)

Mà \(a,b,c > 0 \Rightarrow 2bc > 0\)

Nên dấu của \(\cos A\) phụ thuộc vào tử số \({b^2} + {c^2} - {a^2}\)

Ta có \(\begin{array}{l}0^\circ  < \widehat A < 90^\circ  \Rightarrow \cos A > 0\\90^\circ  < \widehat A < 180^\circ  \Rightarrow \cos A < 0\\\widehat A = 90^\circ  \Rightarrow \cos A = 0\\\widehat A = 180^\circ  \Rightarrow \cos A =  - 1\end{array}\)

=>  Nếu \({b^2} + {c^2} - {a^2} > 0\) thì góc A nhọn

Chọn A.



Bài học liên quan

Từ khóa phổ biến