Giải bài 5 trang 80 sách bài tập toán 10 - Chân trời sáng tạo
Cho tam giác ABC có BC = a,CA = b,AB = c. Mệnh đề nào sau đây đúng?
Đề bài
Cho tam giác ABC có \(BC = a,CA = b,AB = c\). Mệnh đề nào sau đây đúng?
A. Nếu \({b^2} + {c^2} - {a^2} > 0\) thì góc A nhọn
B. Nếu \({b^2} + {c^2} - {a^2} > 0\) thì góc A tù
C. Nếu \({b^2} + {c^2} - {a^2} < 0\) thì góc A nhọn
D. Nếu \({b^2} + {c^2} - {a^2} < 0\) thì góc A vuông
Lời giải chi tiết
Áp dụng định lí côsin ta có: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)
Mà \(a,b,c > 0 \Rightarrow 2bc > 0\)
Nên dấu của \(\cos A\) phụ thuộc vào tử số \({b^2} + {c^2} - {a^2}\)
Ta có \(\begin{array}{l}0^\circ < \widehat A < 90^\circ \Rightarrow \cos A > 0\\90^\circ < \widehat A < 180^\circ \Rightarrow \cos A < 0\\\widehat A = 90^\circ \Rightarrow \cos A = 0\\\widehat A = 180^\circ \Rightarrow \cos A = - 1\end{array}\)
=> Nếu \({b^2} + {c^2} - {a^2} > 0\) thì góc A nhọn
Chọn A.
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài 5 trang 80 sách bài tập toán 10 - Chân trời sáng tạo timdapan.com"