Giải bài 4.38 trang 87 SGK Toán 7 tập 1 - Kết nối tri thức

Cho tam giác ABC cân tại A có A= 120 . Trên cạnh BC lấy hai điểm M, N sao cho MA, NA lần lượt vuông góc với AB, AC. Chứng minh rằng:


Đề bài

Cho tam giác ABC cân tại A có \(\widehat {A{\rm{ }}} = 120^\circ \). Trên cạnh BC lấy hai điểm M, N sao cho MA, NA lần lượt vuông góc với AB, AC. Chứng minh rằng:

a) \(\Delta \)BAM = \(\Delta \)CAN;

b) Các tam giác ANB, AMC lần lượt cân tại N, M.

Phương pháp giải - Xem chi tiết

a) Chứng minh 2 tam giác bằng nhau theo trường hợp g-c-g

b) Chứng minh tam giác có 2 cạnh bằng nhau hoặc 2 góc bằng nhau

Lời giải chi tiết

a) Xét 2 tam giác vuông BAM và CAN có:

AB=AC(Do tam giác ABC cân tại A)

\(\widehat B = \widehat C\) (Do tam giác ABC cân tại A)

=>\(\Delta BAM = \Delta CAN\)(g.c.g)

b)

Xét tam giác ABC cân tại A, có \(\widehat {A{\rm{ }}} = 120^\circ \) có:

\(\widehat B = \widehat C = \frac{{{{180}^o} - {{120}^o}}}{2} = {30^o}\).

Xét tam giác ABM vuông tại A có:

\(\begin{array}{l}\widehat B + \widehat {BAM} + \widehat {AMB} = {180^o}\\ \Rightarrow {30^o} + {90^o} + \widehat {AMB} = {180^o}\\ \Rightarrow \widehat {AMB} = {60^o}\\ \Rightarrow \widehat {AMC} = {180^o} - \widehat {AMB} = {180^o} - {60^o} = {120^o}\end{array}\)

Xét tam giác MAC có:

\(\begin{array}{l}\widehat {AMC} + \widehat {MAC} + \widehat C = {180^o}\\ \Rightarrow {120^o} + \widehat {MAC} + {30^o} = {180^o}\\ \Rightarrow \widehat {MAC} = {30^o} = \widehat C\end{array}\)

\(\Rightarrow \) Tam giác AMC cân tại M.

Vì \(\Delta BAM = \Delta CAN\)=>BM=CN => BN=MC

Xét 2 tam giác ANB và AMC có:

AB=AC

\(AN = AM\)(do \(\Delta BAM = \Delta CAN\))

BN=MC

=>\(\Delta ANB = \Delta AMC\)(c.c.c)

Mà tam giác AMC cân tại M.

=> Tam giác ANB cân tại N.



Bài học liên quan

Từ khóa phổ biến