Giải bài 4.30 trang 86 SGK Toán 7 tập 1 - Kết nối tri thức

Cho góc xOy. Trên tia Ox lấy hai điểm A, M; trên tia Oy lấy hai điểm B, N sao cho OA = OB, OM =ON, OA > OM. Chứng minh rằng:


Đề bài

Cho góc xOy. Trên tia Ox lấy hai điểm A, M; trên tia Oy lấy hai điểm B, N sao cho OA = OB, OM =ON, OA > OM.

Chứng minh rằng:

a)      \(\Delta \)OAN = \(\Delta \)OBM;

b)      \(\Delta \)AMN = \(\Delta \)BNM.

Phương pháp giải - Xem chi tiết

Chứng minh 2 tam giác bằng nhau theo trường hợp cạnh-góc-cạnh.

Lời giải chi tiết

a)      Xét tam giác OAN và OBM có:

OA=OB

\(\widehat{O}\) chung

OM=ON

=>\(\Delta OAN = \Delta OBM\)(c.g.c)

b) Do \(\Delta OAN = \Delta OBM\) nên AN=BM ( 2 cạnh tương ứng); \(\widehat {OAN} = \widehat {OBM}\)( 2 góc tương ứng) =>\(\widehat {NAM} = \widehat {MBN}\)

Do OA + AM = OM; OB + BN = ON

Mà OA = OB, OM =ON

=> AM=BN

Xét hai tam giác AMN và BNM có:

AN=BM

\(\widehat {NAM} = \widehat {MBN}\)

AM=BN

=>\(\Delta AMN = \Delta BNM\)(c.g.c)



Bài học liên quan

Từ khóa phổ biến