Giải bài 4 trang 78 SGK Toán 8 tập 1 - Cánh diều

Cho hai hàm số:


Đề bài

Cho hai hàm số: \(y =  - \dfrac{1}{2}x + 3;y = 2{\rm{x}} - 2\)

a) Vẽ đồ thị của hai hàm số đó trên cùng một mặt phẳng tọa độ.

b) Gọi A, B lần lượt là giao điểm của hai đường thẳng \(y =  - \dfrac{1}{2}x + 3;y = 2{\rm{x}} - 2\)với trục hoành và C là giao điểm của hai đường thẳng đó. Tính chu vi và diện tích của tam giác ABC (đơn vị đo trên các trục là centimét)

Phương pháp giải - Xem chi tiết

- Xác định hai điểm thuộc đồ thị hàm số \(y =  - \frac{1}{2}x + 3;y = 2{\rm{x}} - 2\) để vẽ đồ thị hàm số.

- Xác định tọa độ các điểm A, B, C.

- Tính chu vi, diện tích của tam giác ABC.

Lời giải chi tiết

a) * Vẽ đồ thị hàm số \(y =  - \dfrac{1}{2}x + 3\)

Cho x = 0 thì y = 3, ta được điểm P(0; 3) thuộc đồ thị hàm số \(y =  - \dfrac{1}{2}x + 3\)

Cho y = 0 thì x = 6 ta được điểm A(6; 0) thuộc đồ thị hàm số \(y =  - \dfrac{1}{2}x + 3\)

Vậy đồ thị hàm số \(y =  - \dfrac{1}{2}x + 3\) là đường thẳng đi qua hai điểm P(0; 3) và điểm A(6; 0).

* Vẽ đồ thị hàm số y = 2x – 2

Cho x = 0 thì y = -2 ta được điểm Q(0; -2) thuộc đồ thị hàm số y = 2x – 2

Cho y = 0 thì x = 1 ta được điểm B(1; 0) thuộc đồ thị hàm số y = 2x -2

Vậy đồ thị hàm số y = 2x – 2 là đường thẳng đi qua hai điểm Q(0; -2) và B(1; 0)

 

b) Ta có: A là giao điểm của đường thẳng \(y =  - \dfrac{1}{2}x + 3\) với trục hoành nên \( - \dfrac{1}{2}x + 3 = 0\) suy ra x = 6 nên A(6; 0)

Ta có: B là giao điểm của đường thẳng y = 2x – 2 với trục hoành nên 2x – 2 = 0 suy ra x = 1 nên

B(1; 0)

Xét phương trình hoành độ giao điểm của hai đường thẳng \(y =  - \dfrac{1}{2}x + 3\) và y = 2x – 2 ta có:

\(\begin{array}{l} - \dfrac{1}{2}x + 3 = 2{\rm{x}} - 2\\ \Rightarrow 3 + 2 = \dfrac{1}{2}x + 2{\rm{x}}\\ \Rightarrow 5 = \dfrac{5}{2}x\\ \Rightarrow x = 2 \Rightarrow y = 2\end{array}\)

Vì C là hoành độ giao điểm của hai đường thẳng \(y =  - \dfrac{1}{2}x + 3\) và y = 2x – 2 nên C(2; 2)

Gọi H là hình chiếu của C lên trục Ox

Khi đó: CH = 2, BH = 1; AH = 4

Xét tam giác CHB vuông tại H ta có: \(CB = \sqrt {C{H^2} + B{H^2}}  = \sqrt {{2^2} + {1^2}}  = \sqrt 5 \left( {cm} \right)\)

Xét tam giác CHA vuông tại H ta có: \(CA = \sqrt {A{H^2} + C{H^2}}  = \sqrt {{4^2} + {2^2}}  = \sqrt {12} \left( {cm} \right)\)

Mặt khac AB = 5 cm

Chu vi tam giác ABc là: \(5 + \sqrt 5  + \sqrt {12} \left( {cm} \right)\)

Diện tích tam giác ABC là; \({S_{ABC}} = \dfrac{1}{2}CH.AB = \dfrac{1}{2}.2.5 = 5\left( {c{m^2}} \right)\)



Bài học liên quan

Từ khóa phổ biến