Bài 3.63 trang 134 SBT hình học 12

Giải bài 3.63 trang 134 sách bài tập hình học 12. Trong không gian Oxyz, cho ba điểm A(1; 0; 0), B(1; 1; 1), ...


Trong không gian Oxyz, cho ba điểm A(1; 0; 0), B(1; 1; 1), \(C\left( {\dfrac{1}{3};\dfrac{1}{3};\dfrac{1}{3}} \right)\)

LG a

Viết phương trình tổng quát của mặt phẳng \((\alpha )\) đi qua O và vuông góc với OC.

Phương pháp giải:

Sử dụng công thức viết phương trình mặt phẳng \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0\).

Lời giải chi tiết:

Mặt phẳng \((\alpha )\) có vecto pháp tuyến là \(\overrightarrow {OC}  = \left( {\dfrac{1}{3};\dfrac{1}{3};\dfrac{1}{3}} \right)\) hay \(\overrightarrow n  = 3\overrightarrow {OC}  = (1;1;1)\)

Phương trình mặt phẳng \((\alpha )\) là \(x + y + z = 0\).


LG b

Viết phương trình mặt phẳng \((\beta )\) chứa AB và vuông góc với \((\alpha )\).

Phương pháp giải:

Mặt phẳng \((\beta )\) chứa AB và vuông góc với \((\alpha )\) nên nhận \(\left[ {\overrightarrow {AB} ,\overrightarrow {{n_\alpha }} } \right]\) làm VTPT.

Lời giải chi tiết:

Gọi \((\beta )\) là mặt phẳng chứa AB và vuông góc với mặt phẳng \((\alpha )\).

Hai vecto có giá song song hoặc nằm trên \((\beta )\) là: \(\overrightarrow {AB}  = (0;1;1)\) và \(\overrightarrow {{n_\alpha }}  = (1;1;1)\)

Suy ra \((\beta )\) có vecto pháp tuyến \(\overrightarrow {{n_\beta }}  = \left[ {\overrightarrow {{n_\alpha }} ,\overrightarrow {AB} } \right]  = (0;1; - 1)\)

Phương trình mặt phẳng \((\beta )\) là \( y – z = 0\).