Bài 36 trang 34 SBT toán 8 tập 1

Giải bài 36 trang 34 sách bài tập toán 8. Hãy làm các phép chia sau : ...


Hãy làm các phép chia sau : 

LG câu a

\(\displaystyle{{7x + 2} \over {3x{y^3}}}:{{14x + 4} \over {{x^2}y}}\)

Phương pháp giải:

Muốn chia phân thức \( \dfrac{A}{B}\) cho phân thức \( \dfrac{C}{D}\) khác \(0\), ta nhân \( \dfrac{A}{B}\) với phân thức nghịch đảo của \( \dfrac{C}{D}\)

\( \dfrac{A}{B} :  \dfrac{C}{D} =   \dfrac{A}{B}.  \dfrac{D}{C}\) với \( \dfrac{C}{D} ≠ 0\).

Lời giải chi tiết:

\(\displaystyle{{7x + 2} \over {3x{y^3}}}:{{14x + 4} \over {{x^2}y}} = {{7x + 2} \over {3x{y^3}}}.{{{x^2}y} \over {14x + 4}} \)

\(\displaystyle = {{\left( {7x + 2} \right){x^2}y} \over {3x{y^3}.2\left( {7x + 2} \right)}} = {x \over {6{y^2}}}\)


LG câu b

\(\displaystyle{{8xy} \over {3x - 1}}:{{12x{y^3}} \over {5 - 15x}}\)

Phương pháp giải:

Muốn chia phân thức \( \dfrac{A}{B}\) cho phân thức \( \dfrac{C}{D}\) khác \(0\), ta nhân \( \dfrac{A}{B}\) với phân thức nghịch đảo của \( \dfrac{C}{D}\)

\( \dfrac{A}{B} :  \dfrac{C}{D} =   \dfrac{A}{B}.  \dfrac{D}{C}\) với \( \dfrac{C}{D} ≠ 0\).

Lời giải chi tiết:

\(\displaystyle{{8xy} \over {3x - 1}}:{{12x{y^3}} \over {5 - 15x}} = {{8xy} \over {3x - 1}}.{{5 - 15x} \over {12x{y^3}}} \)

\(\displaystyle= {{8xy\left( {5 - 15x} \right)} \over {\left( {3x - 1} \right).12x{y^3}}} = {{ 8xy.(-5)\left( {3x - 1} \right)} \over {\left( {3x - 1} \right).12x{y^3}}} \)

\(\displaystyle= {{ -40xy.\left( {3x - 1} \right)} \over {\left( {3x - 1} \right).12x{y^3}}} \)

\(\displaystyle=- {{10} \over {3{y^2}}}\)


LG câu c

\(\displaystyle{{27 - {x^3}} \over {5x + 5}}:{{2x - 6} \over {3x + 3}}\)

Phương pháp giải:

Muốn chia phân thức \( \dfrac{A}{B}\) cho phân thức \( \dfrac{C}{D}\) khác \(0\), ta nhân \( \dfrac{A}{B}\) với phân thức nghịch đảo của \( \dfrac{C}{D}\)

\( \dfrac{A}{B} :  \dfrac{C}{D} =   \dfrac{A}{B}.  \dfrac{D}{C}\) với \( \dfrac{C}{D} ≠ 0\).

Lời giải chi tiết:

\(\displaystyle{{27 - {x^3}} \over {5x + 5}}:{{2x - 6} \over {3x + 3}} = {{27 - {x^3}} \over {5x + 5}}.{{3x + 3} \over {2x - 6}} \)

\(\displaystyle = {{\left( {{3^3} - {x^3}} \right).3\left( {x + 1} \right)} \over {5\left( {x + 1} \right).2\left( {x - 3} \right)}}\) \(\displaystyle = {{ - 3\left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right)} \over {10\left( {x - 3} \right)}} \)\(\displaystyle=  - {{3\left( {{x^2} + 3x + 9} \right)} \over {10}}\)


LG câu d

\(\displaystyle\left( {4{x^2} - 16} \right):{{3x + 6} \over {7x - 2}}\)

Phương pháp giải:

Muốn chia phân thức \( \dfrac{A}{B}\) cho phân thức \( \dfrac{C}{D}\) khác \(0\), ta nhân \( \dfrac{A}{B}\) với phân thức nghịch đảo của \( \dfrac{C}{D}\)

\( \dfrac{A}{B} :  \dfrac{C}{D} =   \dfrac{A}{B}.  \dfrac{D}{C}\) với \( \dfrac{C}{D} ≠ 0\).

Lời giải chi tiết:

\(\displaystyle\left( {4{x^2} - 16} \right):{{3x + 6} \over {7x - 2}}\) \(\displaystyle = \left( {4{x^2} - 16} \right).{{7x - 2} \over {3x + 6}} \)

\(\displaystyle= {{4\left( {x + 2} \right)\left( {x - 2} \right)\left( {7x - 2} \right)} \over {3\left( {x + 2} \right)}}\) \(\displaystyle = {{4\left( {x - 2} \right)\left( {7x - 2} \right)} \over 3}\)


LG câu e

\(\displaystyle{{3{x^3} + 3} \over {x - 1}}:\left( {{x^2} - x + 1} \right)\)

Phương pháp giải:

Muốn chia phân thức \( \dfrac{A}{B}\) cho phân thức \( \dfrac{C}{D}\) khác \(0\), ta nhân \( \dfrac{A}{B}\) với phân thức nghịch đảo của \( \dfrac{C}{D}\)

\( \dfrac{A}{B} :  \dfrac{C}{D} =   \dfrac{A}{B}.  \dfrac{D}{C}\) với \( \dfrac{C}{D} ≠ 0\).

Lời giải chi tiết:

\(\displaystyle{{3{x^3} + 3} \over {x - 1}}:\left( {{x^2} - x + 1} \right)\)\(\displaystyle = {{3{x^3} + 3} \over {x - 1}}.{1 \over {{x^2} - x + 1}} \)

\(\displaystyle= {{3\left( {{x^3} + 1} \right)} \over {\left( {x - 1} \right)\left( {{x^2} - x + 1} \right)}} \)\(\displaystyle = {{3\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)} \over {\left( {x - 1} \right)\left( {{x^2} - x + 1} \right)}}\)

\(\displaystyle = {{3\left( {x + 1} \right)} \over {x - 1}}\)



Từ khóa phổ biến