Giải bài 35 trang 19 sách bài tập toán 8 - Cánh diều
Phân tích mỗi đa thức sau thành nhân tử:
Đề bài
Phân tích mỗi đa thức sau thành nhân tử:
a) \(3{x^2} - \sqrt 3 x + \frac{1}{4}\)
b) \({x^2} - x - {y^2} + y\)
c) \({x^3} + 2{x^2} + x - 16x{y^2}\)
Phương pháp giải - Xem chi tiết
Sử dụng các hằng đẳng thức, ta có thể phân tích đa thức thành nhân tử bằng cách vận dụng trực tiếp hằng đẳng thức hoặc bằng cách vận dụng hằng đẳng thức thông qua nhóm số hạng và đặt nhân tử chung.
Lời giải chi tiết
a) Ta có:
\(\begin{array}{l}3{x^2} - \sqrt 3 x + \frac{1}{4}\\ = {\left( {\sqrt 3 x} \right)^2} - 2.\sqrt 3 x.\frac{1}{2} + {\left( {\frac{1}{2}} \right)^2}\\ = {\left( {\sqrt 3 x - \frac{1}{2}} \right)^2}\end{array}\)
b) Ta có:
\(\begin{array}{l}{x^2} - x - {y^2} + y\\ = \left( {{x^2} - {y^2}} \right) - \left( {x - y} \right)\\ = \left( {x - y} \right)\left( {x + y} \right) - \left( {x - y} \right)\\ = \left( {x - y} \right)\left( {x + y - 1} \right)\end{array}\)
c) Ta có:
\(\begin{array}{l}{x^3} + 2{x^2} + x - 16x{y^2}\\ = x\left( {{x^2} + 2x + 1 - 16{y^2}} \right)\\ = x\left[ {\left( {{x^2} + 2x + 1} \right) - 16{y^2}} \right]\\ = x\left[ {{{\left( {x + 1} \right)}^2} - 16{y^2}} \right]\\ = x\left( {x - 4y + 1} \right)\left( {x + 4y + 1} \right)\end{array}\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài 35 trang 19 sách bài tập toán 8 - Cánh diều timdapan.com"