Giải bài 33 trang 19 sách bài tập toán 8 - Cánh diều
Cho \(a,b,c\) là ba số tùy ý. Chứng minh: Nếu \(a + b + c = 0\) thì \({a^3} + {b^3} + {c^3} = 3abc\)
Đề bài
Cho \(a,b,c\) là ba số tùy ý. Chứng minh: Nếu \(a + b + c = 0\) thì \({a^3} + {b^3} + {c^3} = 3abc\)
Phương pháp giải - Xem chi tiết
Áp dụng các phương pháp cộng, trừ, nhân, chia đa thức cho đa thức.
Lời giải chi tiết
Do \(a + b + c = 0\) nên \(x = - a - b\)
Khi đó
\(\begin{array}{l}{a^3} + {b^3} + {c^3} = {a^3} + {b^3} + {\left( { - a - b} \right)^3}\\ = {a^3} + {b^3} - {a^3} - 3.{a^2}b - 3.a{b^2} - {b^2}\\ = - 3{a^2}b - 3a{b^2}\\ = 3ab\left( { - a - b} \right)\\ = 3abc\end{array}\)
Vậy \({a^3} + {b^3} + {c^3} = 3abc\).
Mẹo Tìm đáp án nhanh nhất
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài 33 trang 19 sách bài tập toán 8 - Cánh diều timdapan.com"
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài 33 trang 19 sách bài tập toán 8 - Cánh diều timdapan.com"