Bài 34 trang 10 SBT toán 8 tập 1

Giải bài 34 trang 10 sách bài tập toán 8. Phân tích thành nhân tử...


Phân tích thành nhân tử

LG a

\(\) \({x^4} + 2{x^3} + {x^2}\)

Phương pháp giải:

\(\) Đặt nhân tử chung, sử dụng hằng đẳng thức: \((A+B)^2=A^2+2AB+B^2\)

Lời giải chi tiết:

\(\) \({x^4} + 2{x^3} + {x^2}\)

\( = {x^2}\left( {{x^2} + 2x + 1} \right)\)

\( = {x^2}{\left( {x + 1} \right)^2}\)


LG b

\(\) \({x^3} - x + 3{x^2}y + 3x{y^2} + {y^3} - y\)

Phương pháp giải:

\(\) Nhóm các hạng tử một cách thích hợp để xuất hiện hằng đẳng thức và đặt nhân tử chung.

\((A+B)^3=A^3+3A^2B+3AB^2+B^3\)

Lời giải chi tiết:

\(\) \({x^3} - x + 3{x^2}y + 3x{y^2} + {y^3} – y\)

\(= \left( {{x^3} + 3{x^2}y + 3x{y^2} + {y^3}} \right) - \left( {x + y} \right) \)

\(= {\left( {x + y} \right)^3} - \left( {x + y} \right)\)

\(= \left( {x + y} \right)\left[ {{{\left( {x + y} \right)}^2} - 1} \right]\)

\( = \left( {x + y} \right)\left( {x + y + 1} \right)\left( {x + y - 1} \right) \)


LG c

\(\) \(5{x^2} - 10xy + 5{y^2} - 20{z^2}\) 

Phương pháp giải:

\(\) Đặt nhân tử chung, nhóm các hạng tử một cách thích hợp để xuất hiện hằng đẳng thức.

\((A-B)^2=A^2-2AB+B^2\) và \(A^2-B^2=(A-B)(A+B)\)

Lời giải chi tiết:

\(\) \(5{x^2} - 10xy + 5{y^2} - 20{z^2} \)

\(= 5\left( {{x^2} - 2xy + {y^2} - 4{z^2}} \right)\)

\( = 5\left[ {\left( {{x^2} - 2xy + {y^2}} \right) - 4{z^2}} \right] \)

\(= 5\left[ {{{\left( {x - y} \right)}^2} - {{\left( {2z} \right)}^2}} \right] \)

\(= 5\left( {x - y + 2z} \right)\left( {x - y - 2z} \right) \)



Từ khóa phổ biến