Giải bài 3 trang 20 SGK Toán 7 tập 1 - Chân trời sáng tạo
Tìm x, biết:
Đề bài
Tìm x, biết:
a)\(x:{\left( {\frac{{ - 1}}{2}} \right)^3} = - \frac{1}{2};\) b)\(x.{\left( {\frac{3}{5}} \right)^7} = {\left( {\frac{3}{5}} \right)^9};\)
c)\({\left( {\frac{{ - 2}}{3}} \right)^{11}}:x = {\left( {\frac{{ - 2}}{3}} \right)^9};\) d)\(x.{\left( {0,25} \right)^6} = {\left( {\frac{1}{4}} \right)^8}\)
Phương pháp giải - Xem chi tiết
Muốn tìm số bị chia, ta lấy thương nhân với số chia
Muốn tìm thừa số, ta lấy tích chia cho thừa số còn lại.
Muốn tìm số chia, ta lấy số bị chia cho thương.
Lời giải chi tiết
a)
\(\begin{array}{l}x:{\left( {\frac{{ - 1}}{2}} \right)^3} = - \frac{1}{2}\\x = - \frac{1}{2}.{\left( {\frac{{ - 1}}{2}} \right)^3}\\x = {\left( {\frac{{ - 1}}{2}} \right)^4}\\x = \frac{1}{{16}}\end{array}\)
Vậy \(x = \frac{1}{{16}}\).
b)
\(\begin{array}{l}x.{\left( {\frac{3}{5}} \right)^7} = {\left( {\frac{3}{5}} \right)^9}\\x = {\left( {\frac{3}{5}} \right)^9}:{\left( {\frac{3}{5}} \right)^7}\\x = {\left( {\frac{3}{5}} \right)^2}\\x = \frac{9}{{25}}\end{array}\)
Vậy \(x = \frac{9}{{25}}\).
c)
\(\begin{array}{l}{\left( {\frac{{ - 2}}{3}} \right)^{11}}:x = {\left( {\frac{{ - 2}}{3}} \right)^9}\\x = {\left( {\frac{{ - 2}}{3}} \right)^{11}}:{\left( {\frac{{ - 2}}{3}} \right)^9}\\x = {\left( {\frac{{ - 2}}{3}} \right)^2}\\x = \frac{4}{9}.\end{array}\)
Vậy \(x = \frac{4}{9}\).
d)
\(\begin{array}{l}x.{\left( {0,25} \right)^6} = {\left( {\frac{1}{4}} \right)^8}\\x.{\left( {\frac{1}{4}} \right)^6} = {\left( {\frac{1}{4}} \right)^8}\\x = {\left( {\frac{1}{4}} \right)^8}:{\left( {\frac{1}{4}} \right)^6}\\x = {\left( {\frac{1}{4}} \right)^2}\\x = \frac{1}{{16}}\end{array}\)
Vậy \(x = \frac{1}{{16}}\).
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài 3 trang 20 SGK Toán 7 tập 1 - Chân trời sáng tạo timdapan.com"