Bài 22 trang 23 Vở bài tập toán 8 tập 2

Giải bài 22 trang 23 VBT toán 8 tập 2. Tìm các giá trị của a sao cho mỗi biểu thức sau có giá trị bằng 2...


Tìm các giá trị của \(a\) sao cho mỗi biểu thức sau có giá trị bằng \(2\):

LG a

\(\dfrac{{3a - 1}}{{3a + 1}} + \dfrac{{a - 3}}{{a + 3}}\) 

Phương pháp giải:

Cho giá trị biểu thức bằng 2 bài toán trở thành bài toán giải phương trình chứa ẩn ở mẫu ( với ẩn a)

B1: Đặt ĐKXĐ của phương trình.

B2: Quy đồng khử mẫu

B3: Sử dụng quy tắc chuyển vế để tìm a. 

B4: Kết luận (Kiểm tra giá trị của a tìm được có thỏa mãn với ĐKXĐ không)

Giải chi tiết:

 Bài toán quy về việc giải phương trình ẩn \(a\):

\(\dfrac{{3a - 1}}{{3a + 1}} + \dfrac{{a - 3}}{{a + 3}} = 2\);

Điều kiện xác định: \(3a+1\ne0;a+3\ne0\), tức là \(a \ne  - \dfrac{1}{3},a \ne  - 3\).

Quy đồng mẫu thức hai vế:

\(\dfrac{{\left( {3a - 1} \right)\left( {a + 3} \right)}}{{\left( {3a + 1} \right)\left( {a + 3} \right)}} + \dfrac{{\left( {a - 3} \right)\left( {3a + 1} \right)}}{{\left( {3a + 1} \right)\left( {a + 3} \right)}} \)\(\,= \dfrac{{2\left( {3a + 1} \right)\left( {a + 3} \right)}}{{\left( {3a + 1} \right)\left( {a + 3} \right)}}\)

Khử mẫu thức, ta được phương trình: 

\(\left( {3a - 1} \right)\left( {a + 3} \right) + \left( {a - 3} \right)\left( {3a + 1} \right) \)\(= 2\left( {3a + 1} \right)\left( {a + 3} \right)\)

Giải phương trình nhận được:

⇔ \(3{a^2} + 9a - a - 3 + 3{a^2} - 9a + a - 3 \)\(= 6{a^2} + 18a + 2a + 6\)

\( \Leftrightarrow  - 20a = 12\)

⇔ \(a =   12:(-20)\)

⇔ \(a =  - \dfrac{3}{5}\)

Kiểm tra kết quả: Giá trị \(a =  - \dfrac{3}{5}\) thỏa mãn ĐKXĐ.

Trả lời: Vậy \(a =  - \dfrac{3}{5}\)  thì biểu thức \(\dfrac{{3a - 1}}{{3a + 1}} + \dfrac{{a - 3}}{{a + 3}}\) có giá trị bằng \(2\).       


LG b

 \(\dfrac{{10}}{3} - \dfrac{{3a - 1}}{{4a + 12}} - \dfrac{{7a + 2}}{{6a + 18}}\) 

Phương pháp giải:

Cho giá trị biểu thức bằng 2 bài toán trở thành bài toán giải phương trình chứa ẩn ở mẫu ( với ẩn a)

B1: Đặt ĐKXĐ của phương trình.

B2: Quy đồng khử mẫu

B3: Sử dụng quy tắc chuyển vế để tìm a.

B4: Kết luận (Kiểm tra giá trị của a tìm được có thỏa mãn với ĐKXĐ không)

Giải chi tiết:

Bài toán quy về việc giải phương trình ẩn \(a\):

\(\dfrac{{10}}{3} - \dfrac{{3a - 1}}{{4a + 12}} - \dfrac{{7a + 2}}{{6a + 18}} = 2\)

Điều kiện xác định: \(4a+12\ne 0; 6a+18\ne0\), tức là \(a \ne -3.\)

Quy đồng mẫu thức hai vế: 

\(\dfrac{{4.10\left( {a + 3} \right)}}{{12\left( {a + 3} \right)}} - \dfrac{{3\left( {3a - 1} \right)}}{{12\left( {a + 3} \right)}}\)\(\, - \dfrac{{2\left( {7a + 2} \right)}}{{12\left( {a + 3} \right)}} = \dfrac{{2.12\left( {a + 3} \right)}}{{12\left( {a + 3} \right)}}\)

Khử mẫu thức, ta được phương trình:

 \(40\left( {a + 3} \right) - 3\left( {3a - 1} \right) - 2\left( {7a + 2} \right) \)\(= 24\left( {a + 3} \right)\)

Giải phương trình nhận được:

\(40a + 120 - 9a + 3 - 14a - 4 \)\(= 24a + 72\)

⇔ \( - 7a =  - 47\)

⇔ \(a = \dfrac{{47}}{7}\)

Kiểm tra kết quả: Giá trị \(a = \dfrac{{47}}{7}\) thỏa mãn ĐKXĐ.

Trả lời: Biểu thức đã cho \(\dfrac{{10}}{3} - \dfrac{{3a - 1}}{{4a + 12}} - \dfrac{{7a + 2}}{{6a + 18}}\) có giá trị bằng \(2\) khi \(a=\dfrac{{47}}{7}\).