Giải Bài 2 trang 46 SGK Toán 6 Chân trời sáng tạo tập 1

Tìm các chữ số x, y biết: a) Số 12x02y chia hết cho cả 2; 3 và 5. ...


Đề bài

Tìm các chữ số x, y biết:

a) \(\overline {12x02y} \) chia hết cho cả 2; 3 và 5.

b) \(\overline {413x2y} \) chia hết cho 5 và 9 mà không chia hết cho 2.

Phương pháp giải - Xem chi tiết

 Các số có tận cùng là 0 hoặc 5 thì chia hết cho 5; các số có tận cùng là 0;2;4;6;8 thì chia hết cho 2 nên các số có tận cùng là 0 thì vừa chia hết cho 2, vừa chia hết cho 5; các số có tận cùng là 5 thì chia hết cho 5 nhưng không chia hết cho 2.

a) Các số có chữ số tận cùng là 0 và có tổng các chữ số chia hết cho 3 thì chia hết cho 2, 3 và 5.

b) Các số có tận cùng là 5 và có tổng các chữ số chia hết cho 9 thì chia hết cho 5 và 9 mà không chia hết cho 2.

Lời giải chi tiết

a) \(\overline {12x02y} \) chia hết cho 2 và 5 khi chữ số tận cùng của nó là 0.

=> y = 0

\(\overline {12x020} \) chia hết cho 3 khi tổng các chữ số của nó cũng chia hết cho 3.

Nên (1 + 2 + x + 0 + 2 + 0)\( \vdots \)3

=> (x + 5) \( \vdots \) 3 và \(0 \le x \le 9\)

=> x\( \in \) {1; 4; 7}

Vậy để \(\overline {12x02y} \) chia hết cho 2, 3 và cả 5 thì y = 0 và x \( \in \){1; 4; 7}.

b) \(\overline {413x2y} \) chia hết cho 5 mà không chia hết cho 2 khi chữ số tận cùng của nó là 5

=> y = 5

\(\overline {413x25} \)chia hết cho 9 khi tổng các chữ số của nó cũng chia hết cho 9

Nên (4 + 1 + 3 + x + 2 + 5) \( \vdots \)9

=> (x + 15) \( \vdots \)9 và \(0 \le x \le 9\)

=> x = 3.

Vậy  \(\overline {413x2y} \) chia hết cho 5 và 9 mà không chia hết cho 2 thì x = 3 và y = 5.



Từ khóa phổ biến