Bài 16 trang 49 Vở bài tập toán 8 tập 2

Giải bài 16 trang 49 VBT toán 8 tập 2. Giải các bất phương trình và biểu diễn tập nghiệm trên trục số: a) 2x - 3 > 0 ...


Giải các bất phương trình và biểu diễn tập nghiệm trên trục số:

LG a

\(2x - 3 > 0\);   

Phương pháp giải:

Áp dụng

- Qui tắc chuyển vế

Khi chuyển một hạng tử của bất phương trình từ vế này sang vế kia ta đổi dấu hạng tử đó.

- Quy tắc nhân với một số

Khi nhân hai vế của bất phương trình với cùng một số khác 0, ta phải:

+ Giữ nguyên chiều bất phương trình nếu số đó dương.

+ Đổi chiều bất phương trình nếu số đó âm.

Lời giải chi tiết:

Ta có

\(\eqalign{& \,\,2x - 3 > 0 \cr & \Leftrightarrow 2x > 3 \cr & \Leftrightarrow x > 3:2\cr & \Leftrightarrow x > {3 \over 2} \cr} \)

Vậy nghiệm của bất phương trình là \(x > \dfrac{3}{2} \) và được biểu diễn trên trục số như sau: 


LG b

 \(3x + 4 < 0\); 

Phương pháp giải:

Áp dụng

- Qui tắc chuyển vế

Khi chuyển một hạng tử của bất phương trình từ vế này sang vế kia ta đổi dấu hạng tử đó.

- Quy tắc nhân với một số

Khi nhân hai vế của bất phương trình với cùng một số khác 0, ta phải:

+ Giữ nguyên chiều bất phương trình nếu số đó dương.

+ Đổi chiều bất phương trình nếu số đó âm.

Lời giải chi tiết:

Ta có 

\(\eqalign{
&\,\,3x + 4 < 0 \cr 
& \Leftrightarrow 3x < - 4 \cr 
& \Leftrightarrow x < {{ - 4} \over 3} \cr} \)

Vậy nghiệm của bất phương trình là \( x < \dfrac{{ - 4}}{3} \) và được biểu diễn trên trục số như sau:


LG c

\(4 - 3x ≤ 0\);  

Phương pháp giải:

Áp dụng

- Qui tắc chuyển vế

Khi chuyển một hạng tử của bất phương trình từ vế này sang vế kia ta đổi dấu hạng tử đó.

- Quy tắc nhân với một số

Khi nhân hai vế của bất phương trình với cùng một số khác 0, ta phải:

+ Giữ nguyên chiều bất phương trình nếu số đó dương.

+ Đổi chiều bất phương trình nếu số đó âm. 

Lời giải chi tiết:

Ta có

\(\begin{array}{l}
4 - 3x \le 0\\
\Leftrightarrow 4 \le 3x\\
\Leftrightarrow \dfrac{4}{3} \le x 
\end{array}\)

Vậy nghiệm của bất phương trình là \(x \geqslant \dfrac{4}{3}\) và được biểu diễn trên trục số như sau:


LG d

\(5 - 2x ≥ 0\). 

Phương pháp giải:

Áp dụng

- Qui tắc chuyển vế

Khi chuyển một hạng tử của bất phương trình từ vế này sang vế kia ta đổi dấu hạng tử đó.

- Quy tắc nhân với một số

Khi nhân hai vế của bất phương trình với cùng một số khác 0, ta phải:

+ Giữ nguyên chiều bất phương trình nếu số đó dương.

+ Đổi chiều bất phương trình nếu số đó âm.

Lời giải chi tiết:

Ta có

\(\begin{array}{l}
5 - 2x \ge 0\\
\Leftrightarrow 5 \ge 2x\\ 
\Leftrightarrow 2,5\ge x
\end{array}\)

Vậy nghiệm của bất phương trình là \( x \leqslant 2,5\) và được biểu diễn trên trục số như sau: